
SQL Cheat Sheet
In this guide, you’ll find a useful cheat sheet that documents some of
the more commonly used elements of SQL, and even a few of the
less common. Hopefully, it will help developers – both beginner and
experienced level – become more proficient in their understanding
of the SQL language.

Use this as a quick reference during development, a learning aid, or even print it out and bind it if
you’d prefer (whatever works!).

But before we get to the cheat sheet itself, for developers who may not be familiar with SQL, let’s
start with…

What is SQL

SQL vs MySQL

Installing MySQL

Using MySQL

Cheat Sheet

Comments

MySQL Data Types

Operators

Functions

Wildcard Characters

Keys

Indexes

Joins

View

Conclusions

03

07

08

09

11

20

21

25

27

36

37

39

40

42

43

Table of Contents

WebsiteSetup.org - MySQL Cheat Sheet

What is SQL
SQL stands for Structured Query Language. It’s the language of choice on today’s web for storing,
manipulating and retrieving data within relational databases. Most, if not all of the websites you visit
will use it in some way, including this one.
Here’s what a basic relational database looks like. This example in particular stores e-commerce
information, specifically the products on sale, the users who buy them, and records of these orders
which link these 2 entities.

SQL Cheat Sheet 3

WebsiteSetup.org - MySQL Cheat Sheet

Using SQL, you are able to interact with the database by writing queries, which when executed,
return any results which meet its criteria.
Here’s an example query:-

Using this SELECT statement, the query selects all data from all columns in the user’s table. It
would then return data like the below, which is typically called a results set:-

SELECT * FROM users;

SQL Cheat Sheet 4

WebsiteSetup.org - MySQL Cheat Sheet

If we were to replace the asterisk wildcard character (*) with specific column names instead, only
the data from these columns would be returned from the query.

We can add a bit of complexity to a standard SELECT statement by adding a WHERE clause, which
allows you to filter what gets returned.

This query would return all data from the products table with a stock_count value of less than 10
in its results set. The use of the ORDER BY keyword means the results will be ordered using the
stock_count column, lowest values to highest.

SELECT first_name, last_name FROM users;

SELECT * FROM products WHERE stock_count <= 10 ORDER BY stock_count ASC;

SQL Cheat Sheet 5

WebsiteSetup.org - MySQL Cheat Sheet

Using the INSERT INTO statement, we can add new data to a table. Here’s a basic example adding
a new user to the users table:-

Then if you were to rerun the query to return all data from the user’s table, the results set would
look like this:

Of course, these examples demonstrate only a very small selection of what the SQL language is
capable of.

INSERT INTO users (first_name, last_name, address, email)
VALUES (‘Tester’, ‘Jester’, ‘123 Fake Street, Sheffield, United
Kingdom’, ‘test@lukeharrison.dev’);

SQL Cheat Sheet 6

WebsiteSetup.org - MySQL Cheat Sheet

SQL vs MySQL
You may have heard of MySQL before. It’s important that you don’t confuse this with SQL itself, as
there’s a clear difference.

SQL is the language. It outlines syntax that allows you to write queries that manage relational
databases. Nothing more.

MySQL meanwhile is a database system that runs on a server. It implements the SQL language,
allowing you to write queries using its syntax to manage MySQL databases.

In addition to MySQL, there are other systems that implement SQL. Some of the more popular
ones include:
• PostgreSQL
• SQLite
• Oracle Database
• Microsoft SQL Server

SQL Cheat Sheet 7

WebsiteSetup.org - MySQL Cheat Sheet

https://websitesetup.org/mysql-cheat-sheet/

Installing MySQL

Windows

MacOS

The recommended way to install MySQL on Windows is by using the installer you can download
from the MySQL website.

On macOS, the recommended way to install MySQL is using native packages, which sounds a lot
more complicated than it actually is. Essentially, it also involves just downloading an installer.

SQL Cheat Sheet 8

WebsiteSetup.org - MySQL Cheat Sheet

https://dev.mysql.com/doc/mysql-installer/en/mysql-installer.html
https://dev.mysql.com/doc/mysql-osx-excerpt/8.0/en/osx-installation-pkg.html

Using MySQL

Alternatively, If you prefer to use package managers such as Homebrew, you can install MySQL like
so:

With MySQL now installed on your system, to get up and going as quickly as possible writing SQL
queries, it’s recommended that you use an SQL management application to make managing your
databases a much simpler, easier process.

There are lots of apps to choose from which largely do the same job, so it’s down to your own
personal preference on which one to use:
• MySQL Workbench is developed by Oracle, the owner of MySQL.
• HeidiSQL (Recommended Windows) is a free, open-source app for Windows. For macOS and

Linux users, Wine is first required as a prerequisite.
• phpMyAdmin is a very popular alternative that operates in the web browser.
• Sequel Pro (Recommended macOS) is a macOS’ only alternative and our favorite thanks to its

clear and easy to use interface.

When you’re ready to start writing your own SQL queries, rather than spending time creating your
own database, consider importing dummy data instead.

The MySQL website provides a number of dummy databases that you can download free of charge
and then import into your SQL app.

Whilst if you need to install the older MySQL version 5.7, which is still widely used today on the web,
you can:

brew install mysql

brew install mysql@5.7

SQL Cheat Sheet 9

WebsiteSetup.org - MySQL Cheat Sheet

https://brew.sh/
https://www.mysql.com/products/workbench/
https://www.heidisql.com/
https://www.winehq.org/
http://phpmyadmin.net/
https://www.sequelpro.com/
https://dev.mysql.com/doc/index-other.html

Our favorite of these is the world database, which provides some interesting data to practice writing
SQL queries for. Here’s a screenshot of its country table within Sequel Pro.

Whilst this one returns all European countries with a population of over 50million along with their
capital city and its population.

This example query returns all countries with Queen Elizabeth II as their head of state � .

SQL Cheat Sheet 10

WebsiteSetup.org - MySQL Cheat Sheet

Cheat Sheet

Keywords
A collection of keywords used in SQL statements, a description, and where appropriate an example.
Some of the more advanced keywords have their own dedicated section later in the cheat sheet.

Where MySQL is mentioned next to an example, this means this example is only applicable to
MySQL databases (as opposed to any other database system).

SQL Keywords

Keyword Description

ADD

Adds a new column to an existing table.
Example: Adds a new column named ‘email_address’ to a table named
‘users’.

ALTER TABLE users

ADD email_address varchar(255);

ADD
CONSTRAINT

It creates a new constraint on an existing table, which is used to specify
rules for any data in the table.
Example: Adds a new PRIMARY KEY constraint named ‘user’ on columns
ID and SURNAME.

ALTER TABLE users

ADD CONSTRAINT user PRIMARY KEY (ID, SURNAME);

ALTER TABLE

Adds, deletes or edits columns in a table. It can also be used to add and
delete constraints in a table, as per the above.
Example: Adds a new boolean column called ‘approved’ to a table named
‘deals’.

ALTER TABLE deals

ADD approved boolean;

Example 2: Deletes the ‘approved’ column from the ‘deals’ table

ALTER TABLE deals

DROP COLUMN approved;

SQL Cheat Sheet 11

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

ALTER
COLUMN

Changes the data type of a table’s column.
Example: In the ‘users’ table, make the column ‘incept_date’ into a
‘datetime’ type.

ALTER TABLE users

ALTER COLUMN incept_date datetime;

ALL

Returns true if all of the subquery values meet the passed condition.
Example: Returns the users with a higher number of tasks than the user
with the highest number of tasks in the HR department (id 2)

SELECT first_name, surname, tasks_no

FROM users

WHERE tasks_no > ALL (SELECT tasks FROM user WHERE
department_id = 2);

AND

Used to join separate conditions within a WHERE clause.
Example: Returns events located in London, United Kingdom

SELECT * FROM events

WHERE host_country='United Kingdom' AND host_
city='London';

ANY

Returns true if any of the subquery values meet the given condition.
Example: Returns products from the products table which have received
orders – stored in the orders table – with a quantity of more than 5.

SELECT name

FROM products

WHERE productId = ANY (SELECT productId FROM orders WHERE
quantity > 5);

AS

Renames a table or column with an alias value which only exists for the
duration of the query.
Example: Aliases north_east_user_subscriptions column

SELECT north_east_user_subscriptions AS ne_subs

FROM users

WHERE ne_subs > 5;

ASC Used with ORDER BY to return the data in ascending order.
Example: Apples, Bananas, Peaches, Raddish

SQL Cheat Sheet 12

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

BETWEEN

Selects values within the given range.

Example 1: Selects stock with a quantity between 100 and 150.

SELECT * FROM stock

WHERE quantity BETWEEN 100 AND 150;

Example 2: Selects stock with a quantity NOT between 100 and 150.
Alternatively, using the NOT keyword here reverses the logic and selects
values outside the given range.

SELECT * FROM stock

WHERE quantity NOT BETWEEN 100 AND 150;

CASE

Change query output depending on conditions.
Example: Returns users and their subscriptions, along with a new column
called activity_levels that makes a judgement based on the number of
subscriptions.

SELECT first_name, surname, subscriptions

CASE WHEN subscriptions > 10 THEN 'Very active'

WHEN Quantity BETWEEN 3 AND 10 THEN 'Active'

ELSE 'Inactive'

END AS activity_levels

FROM users;

CHECK

Adds a constraint that limits the value which can be added to a column.
Example 1 (MySQL): Makes sure any users added to the users table are 18
or over.

CREATE TABLE users (

first_name varchar(255),

age int,

CHECK (age>=18)

);

Example 2 (MySQL): Adds a check after the table has already been
created.

ALTER TABLE users

ADD CHECK (age>=18);

SQL Cheat Sheet 13

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

CREATE
DATABASE

Creates a new database.
Example: Creates a new database named ‘websitesetup’.

CREATE DATABASE websitesetup;

CREATE
TABLE

Creates a new table .
Example: Creates a new table called ‘users’ in the ‘websitesetup’ database.

CREATE TABLE users (

id int,

first_name varchar(255),

surname varchar(255),

address varchar(255),

contact_number int

);

DEFAULT

Sets a default value for a column;
Example 1 (MySQL): Creates a new table called Products which has a
name column with a default value of ‘Placeholder Name’ and an available_
from column with a default value of today’s date.

CREATE TABLE products (

id int,

name varchar(255) DEFAULT 'Placeholder Name',

available_from date DEFAULT GETDATE()

);

Example 2 (MySQL): The same as above, but editing an existing table.

ALTER TABLE products

ALTER name SET DEFAULT 'Placeholder Name',

ALTER available_from SET DEFAULT GETDATE();

DELETE

Delete data from a table.
Example: Removes a user with a user_id of 674.

DELETE FROM users WHERE user_id = 674;

DESC Used with ORDER BY to return the data in descending order.
Example: Raddish, Peaches, Bananas, Apples

SQL Cheat Sheet 14

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

DROP
COLUMN

Deletes a column from a table.
Example: Removes the first_name column from the users table.

ALTER TABLE users

DROP COLUMN first_name

DROP
DATABASE

Deletes the entire database.
Example: Deletes a database named ‘websitesetup’.

DROP DATABASE websitesetup;

DROP
DEFAULT

Removes a default value for a column.
Example (MySQL): Removes the default value from the ‘name’ column in
the ‘products’ table.

ALTER TABLE products

ALTER COLUMN name DROP DEFAULT;

DROP TABLE

Deletes a table from a database.
Example: Removes the users table.

DROP TABLE users;

EXISTS

Checks for the existence of any record within the subquery, returning true if
one or more records are returned.
Example: Lists any dealerships with a deal finance percentage less than 10.

SELECT dealership_name

FROM dealerships

WHERE EXISTS (SELECT deal_name FROM deals WHERE
dealership_id = deals.dealership_id AND finance_
percentage < 10);

FROM

Specifies which table to select or delete data from.
Example: Selects data from the users table.

SELECT area_manager

FROM area_managers

WHERE EXISTS (SELECT ProductName FROM Products WHERE
area_manager_id = deals.area_manager_id AND Price < 20);

SQL Cheat Sheet 15

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

IN

Used alongside a WHERE clause as a shorthand for multiple OR conditions.
So instead of:

SELECT * FROM users

WHERE country = 'USA' OR country = 'United Kingdom' OR
country = 'Russia' OR country = 'Australia';

You can use:

SELECT * FROM users

WHERE country IN ('USA', 'United Kingdom', 'Russia',
'Australia');

INSERT INTO

Add new rows to a table.
Example: Adds a new vehicle.

INSERT INTO cars (make, model, mileage, year)

VALUES ('Audi', 'A3', 30000, 2016);

IS NULL

Tests for empty (NULL) values.
Example: Returns users that haven’t given a contact number.

SELECT * FROM users

WHERE contact_number IS NULL;

IS NOT NULL The reverse of NULL. Tests for values that aren’t empty / NULL.

LIKE

Returns true if the operand value matches a pattern.
Example: Returns true if the user’s first_name ends with ‘son’.

SELECT * FROM users

WHERE first_name LIKE '%son';

NOT

Returns true if a record DOESN’T meet the condition.
Example: Returns true if the user’s first_name doesn’t end with ‘son’.

SELECT * FROM users

WHERE first_name NOT LIKE '%son';

OR

Used alongside WHERE to include data when either condition is true.
Example: Returns users that live in either Sheffield or Manchester.

SELECT * FROM users

WHERE city = 'Sheffield' OR 'Manchester';

SQL Cheat Sheet 16

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

ORDER BY

Used to sort the result data in ascending (default) or descending order
through the use of ASC or DESC keywords.
Example: Returns countries in alphabetical order.

SELECT * FROM countries

ORDER BY name;

ROWNUM

Returns results where the row number meets the passed condition.
Example: Returns the top 10 countries from the countries table.

SELECT * FROM countries

WHERE ROWNUM <= 10;

SELECT

Used to select data from a database, which is then returned in a results set.
Example 1: Selects all columns from all users.

SELECT * FROM users;

Example 2: Selects the first_name and surname columns
from all users.xx

SELECT first_name, surname FROM users;

SELECT
DISTINCT

Sames as SELECT, except duplicate values are excluded.
Example: Creates a backup table using data from the users table.

SELECT * INTO usersBackup2020

FROM users;

SELECT INTO

Copies data from one table and inserts it into another.
Example: Returns all countries from the users table, removing any duplicate
values (which would be highly likely)

SELECT DISTINCT country from users;

SELECT TOP

Allows you to return a set number of records to return from a table.
Example: Returns the top 3 cars from the cars table.

SELECT TOP 3 * FROM cars;

SQL Cheat Sheet 17

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

SET

Used alongside UPDATE to update existing data in a table.
Example: Updates the value and quantity values for an order with an id of
642 in the orders table.

UPDATE orders

SET value = 19.49, quantity = 2

WHERE id = 642;

SOME Identical to ANY.

TOP

Used alongside SELECT to return a set number of records from a table.
Example: Returns the top 5 users from the users table.

SELECT TOP 5 * FROM users;

TRUNCATE
TABLE

Similar to DROP, but instead of deleting the table and its data, this deletes
only the data.
Example: Empties the sessions table, but leaves the table itself intact.

TRUNCATE TABLE sessions;

UNION

Combines the results from 2 or more SELECT statements and returns only
distinct values.
Example: Returns the cities from the events and subscribers tables.

SELECT city FROM events

UNION

SELECT city from subscribers;

UNION ALL The same as UNION, but includes duplicate values.

SQL Cheat Sheet 18

WebsiteSetup.org - MySQL Cheat Sheet

SQL Keywords

Keyword Description

UNIQUE

This constraint ensures all values in a column are unique.
Example 1 (MySQL): Adds a unique constraint to the id column when
creating a new users table.

CREATE TABLE users (

id int NOT NULL,

name varchar(255) NOT NULL,

UNIQUE (id)

);

Example 2 (MySQL): Alters an existing column to add a UNIQUE
constraint.

ALTER TABLE users

ADD UNIQUE (id);

UPDATE

Updates existing data in a table.
Example: Updates the mileage and serviceDue values for a vehicle with an
id of 45 in the cars table.

UPDATE cars

SET mileage = 23500, serviceDue = 0

WHERE id = 45;

VALUES

Used alongside the INSERT INTO keyword to add new values to a table.
Example: Adds a new car to the cars table.

INSERT INTO cars (name, model, year)

VALUES ('Ford', 'Fiesta', 2010);

WHERE

Filters results to only include data which meets the given condition.
Example: Returns orders with a quantity of more than 1 item.

SELECT * FROM orders

WHERE quantity > 1;

SQL Cheat Sheet 19

WebsiteSetup.org - MySQL Cheat Sheet

Comments

Single Line Comments

Multiline Comments

Comments allow you to explain sections of your SQL statements, or to comment out code and
prevent its execution.

In SQL, there are 2 types of comments, single line and multiline.

Single line comments start with –. Any text after these 2 characters to the end of the line will be
ignored.

Multiline comments start with /* and end with */. They stretch across multiple lines until the
closing characters have been found.

-- My Select query

SELECT * FROM users;

/*

This is my select query.

It grabs all rows of data from the users table

*/

SELECT * FROM users;

/*

This is another select query, which I don’t want to execute yet

SELECT * FROM tasks;

*/

SQL Cheat Sheet 20

WebsiteSetup.org - MySQL Cheat Sheet

String Data Types

MySQL Data Types
When creating a new table or editing an existing one, you must specify the type of data that each
column accepts.

In the below example, data passed to the id column must be an int, whilst the first_name column
has a VARCHAR data type with a maximum of 255 characters.

CREATE TABLE users (

 id int,

 first_name varchar(255)

);

String Data Types

Data Type Description

CHAR(size)
Fixed length string which can contain letters, numbers and special
characters. The size parameter sets the maximum string length, from
0 – 255 with a default of 1.

VARCHAR(size) Variable length string similar to CHAR(), but with a maximum string
length range from 0 to 65535.

BINARY(size) Similar to CHAR() but stores binary byte strings.

VARBINARY(size) Similar to VARCHAR() but for binary byte strings.

TINYBLOB Holds Binary Large Objects (BLOBs) with a max length of 255 bytes.

TINYTEXT Holds a string with a maximum length of 255 characters. Use
VARCHAR() instead, as it’s fetched much faster.

TEXT(size) Holds a string with a maximum length of 65535 bytes. Again, better to
use VARCHAR().

BLOB(size) Holds Binary Large Objects (BLOBs) with a max length of 65535
bytes.

MEDIUMTEXT Holds a string with a maximum length of 16,777,215 characters.

SQL Cheat Sheet 21

WebsiteSetup.org - MySQL Cheat Sheet

String Data Types

Data Type Description

MEDIUMBLOB Holds Binary Large Objects (BLOBs) with a max length of 16,777,215
bytes.

LONGTEXT Holds a string with a maximum length of 4,294,967,295 characters.

LONGBLOB Holds Binary Large Objects (BLOBs) with a max length of
4,294,967,295 bytes.

ENUM(a, b, c,
etc…)

A string object that only has one value, which is chosen from a list of
values which you define, up to a maximum of 65535 values. If a value
is added which isn’t on this list, it’s replaced with a blank value instead.
Think of ENUM being similar to HTML radio boxes in this regard.

CREATE TABLE tshirts (color ENUM(‘red’, ‘green’,
‘blue’, ‘yellow’, ‘purple’));

SET(a, b, c, etc…)
A string object that can have 0 or more values, which is chosen from a
list of values which you define, up to a maximum of 64 values. Think of
SET being similar to HTML checkboxes in this regard.

Numeric Data Types

Data Type Description

BIT(size) A bit-value type with a default of 1. The allowed number of bits in a
value is set via the size parameter, which can hold values from 1 to 64.

TINYINT(size)
A very small integer with a signed range of -128 to 127, and an
unsigned range of 0 to 255. Here, the size parameter specifies the
maximum allowed display width, which is 255.

BOOL Essentially a quick way of setting the column to TINYINT with a size of
1. 0 is considered false, whilst 1 is considered true.

BOOLEAN Same as BOOL.

SMALLINT(size)
A small integer with a signed range of -32768 to 32767, and an
unsigned range from 0 to 65535. Here, the size parameter specifies
the maximum allowed display width, which is 255.

Numeric Data Types

SQL Cheat Sheet 22

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Data Types

Data Type Description

MEDIUMINT(size)
A medium integer with a signed range of -8388608 to 8388607,
and an unsigned range from 0 to 16777215. Here, the size parameter
specifies the maximum allowed display width, which is 255.

INT(size)

A medium integer with a signed range of -2147483648 to
2147483647, and an unsigned range from 0 to 4294967295. Here, the
size parameter specifies the maximum allowed display width, which is
255.

INTEGER(size) Same as INT.

BIGINT(size)

A medium integer with a signed range of -9223372036854775808
to 9223372036854775807, and an unsigned range from 0 to
18446744073709551615. Here, the size parameter specifies the
maximum allowed display width, which is 255.

FLOAT(p)

A floating point number value. If the precision (p) parameter is between
0 to 24, then the data type is set to FLOAT(), whilst if its from 25 to 53,
the data type is set to DOUBLE(). This behaviour is to make the storage
of values more efficient.

DOUBLE(size, d)
A floating point number value where the total digits are set by the size
parameter, and the number of digits after the decimal point is set by
the d parameter.

DECIMAL(size, d)

An exact fixed point number where the total number of digits is set by
the size parameters, and the total number of digits after the decimal
point is set by the d parameter.

For size, the maximum number is 65 and the default is 10, whilst for d,
the maximum number is 30 and the default is 10.

DEC(size, d) Same as DECIMAL.

SQL Cheat Sheet 23

WebsiteSetup.org - MySQL Cheat Sheet

Date / Time Data Types

Data Type Description

DATE A simple date in YYYY-MM–DD format, with a supported range from
‘1000-01-01’ to ‘9999-12-31’.

DATETIME(fsp)

A date time in YYYY-MM-DD hh:mm:ss format, with a supported range
from ‘1000-01-01 00:00:00’ to ‘9999-12-31 23:59:59’.

By adding DEFAULT and ON UPDATE to the column definition, it
automatically sets to the current date/time.

TIMESTAMP(fsp)

A Unix Timestamp, which is a value relative to the number of seconds
since the Unix epoch (‘1970-01-01 00:00:00’ UTC). This has a
supported range from ‘1970-01-01 00:00:01’ UTC to ‘2038-01-09
03:14:07’ UTC.

By adding DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT TIMESTAMP to the column definition, it automatically sets
to current date/time.

TIME(fsp) A time in hh:mm:ss format, with a supported range from ‘-838:59:59’
to ‘838:59:59’.

YEAR A year, with a supported range of ‘1901’ to ‘2155’.

Date / Time Data Types

SQL Cheat Sheet 24

WebsiteSetup.org - MySQL Cheat Sheet

Arithmetic Operators

Bitwise Operator

Comparison Operators

Operators

Arithmetic Operators

Operator Description

+ Add

– Subtract

* Multiply

/ Divide

% Modulo

Bitwise Operator

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

Comparison Operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

SQL Cheat Sheet 25

WebsiteSetup.org - MySQL Cheat Sheet

Compound Operators

Operator Description

+= Add equals

-= Subtract equals

*= Multiply equals

/= Divide equals

%= Modulo equals

&= Bitwise AND equals

^-= Bitwise exclusive equals

|*= Bitwise OR equals

Compound Operators

SQL Cheat Sheet 26

WebsiteSetup.org - MySQL Cheat Sheet

String Functions

Name Description

ASCII Returns the equivalent ASCII value for a specific character.

CHAR_LENGTH Returns the character length of a string.

CHARACTER_
LENGTH Same as CHAR_LENGTH.

CONCAT Adds expressions together, with a minimum of 2.

CONCAT_WS Adds expressions together, but with a separator between each value.

FIELD Returns an index value relative to the position of a value within a list of
values.

FIND IN SET Returns the position of a string in a list of strings.

FORMAT When passed a number, returns that number formatted to include
commas (eg 3,400,000).

INSERT Allows you to insert one string into another at a certain point, for a
certain number of characters.

INSTR Returns the position of the first time one string appears within another.

LCASE Convert a string to lowercase.

LEFT Starting from the left, extract the given number of characters from a
string and return them as another.

LENGTH Returns the length of a string, but in bytes.

LOCATE Returns the first occurrence of one string within another,

LOWER Same as LCASE.

LPAD Left pads one string with another, to a specific length.

LTRIM Remove any leading spaces from the given string.

String Functions

Functions

SQL Cheat Sheet 27

WebsiteSetup.org - MySQL Cheat Sheet

String Functions

Name Description

MID Extracts one string from another, starting from any position.

POSITION Returns the position of the first time one substring appears within
another.

REPEAT Allows you to repeat a string

REPLACE Allows you to replace any instances of a substring within a string, with
a new substring.

REVERSE Reverses the string.

RIGHT Starting from the right, extract the given number of characters from a
string and return them as another.

RPAD Right pads one string with another, to a specific length.

RTRIM Removes any trailing spaces from the given string.

SPACE Returns a string full of spaces equal to the amount you pass it.

STRCMP Compares 2 strings for differences

SUBSTR Extracts one substring from another, starting from any position.

SUBSTRING Same as SUBSTR

SUBSTRING_
INDEX

Returns a substring from a string before the passed substring is found
the number of times equals to the passed number.

TRIM Removes trailing and leading spaces from the given string. Same as if
you were to run LTRIM and RTRIM together.

UCASE Convert a string to uppercase.

UPPER Same as UCASE.

SQL Cheat Sheet 28

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

ABS Returns the absolute value of the given number.

ACOS Returns the arc cosine of the given number.

ASIN Returns the arc sine of the given number.

ATAN Returns the arc tangent of one or 2 given numbers.

ATAN2 Return the arc tangent of 2 given numbers.

AVG Returns the average value of the given expression.

CEIL Returns the closest whole number (integer) upwards from a given
decimal point number.

CEILING Same as CEIL.

COS Returns the cosine of a given number.

COT Returns the cotangent of a given number.

COUNT Returns the amount of records that are returned by a SELECT query.

DEGREES Converts a radians value to degrees.

DIV Allows you to divide integers.

EXP Returns e to the power of the given number.

FLOOR Returns the closest whole number (integer) downwards from a given
decimal point number.

GREATEST Returns the highest value in a list of arguments.

LEAST Returns the smallest value in a list of arguments.

LN Returns the natural logarithm of the given number

LOG Returns the natural logarithm of the given number, or the logarithm of
the given number to the given base

LOG10 Does the same as LOG, but to base 10.

Numeric Functions

SQL Cheat Sheet 29

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

LOG2 Does the same as LOG, but to base 2.

MAX Returns the highest value from a set of values.

MIN Returns the lowest value from a set of values.

MOD Returns the remainder of the given number divided by the other given
number.

PI Returns PI.

POW Returns the value of the given number raised to the power of the other
given number.

POWER Same as POW.

RADIANS Converts a degrees value to radians.

RAND Returns a random number.

ROUND Round the given number to the given amount of decimal places.

SIGN Returns the sign of the given number.

SIN Returns the sine of the given number.

SQRT Returns the square root of the given number.

SUM Returns the value of the given set of values combined.

TAN Returns the tangent of the given number.

TRUNCATE Returns a number truncated to the given number of decimal places.

SQL Cheat Sheet 30

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

ADDDATE Add a date interval (eg: 10 DAY) to a date (eg: 20/01/20) and return
the result (eg: 20/01/30).

ADDTIME Add a time interval (eg: 02:00) to a time or datetime (05:00) and
return the result (07:00).

CURDATE Get the current date.

CURRENT_DATE Same as CURDATE.

CURRENT_TIME Get the current time.

CURRENT_
TIMESTAMP Get the current date and time.

CURTIME Same as CURRENT_TIME.

DATE Extracts the date from a datetime expression.

DATEDIFF Returns the number of days between the 2 given dates.

DATE_ADD Same as ADDDATE.

DATE_FORMAT Formats the date to the given pattern.

DATE_SUB Subtract a date interval (eg: 10 DAY) to a date (eg: 20/01/20) and
return the result (eg: 20/01/10).

DAY Returns the day for the given date.

DAYNAME Returns the weekday name for the given date.

DAYOFWEEK Returns the index for the weekday for the given date.

DAYOFYEAR Returns the day of the year for the given date.

EXTRACT Extract from the date the given part (eg MONTH for 20/01/20 = 01).

FROM DAYS Return the date from the given numeric date value.

HOUR Return the hour from the given date.

Date Functions

SQL Cheat Sheet 31

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

LAST DAY Get the last day of the month for the given date.

LOCALTIME Gets the current local date and time.

LOCALTIMESTAMP Same as LOCALTIME.

MAKEDATE Creates a date and returns it, based on the given year and number of
days values.

MAKETIME Creates a time and returns it, based on the given hour, minute and
second values.

MICROSECOND Returns the microsecond of a given time or datetime.

MINUTE Returns the minute of the given time or datetime.

MONTH Returns the month of the given date.

MONTHNAME Returns the name of the month of the given date.

NOW Same as LOCALTIME.

PERIOD_ADD Adds the given number of months to the given period.

PERIOD_DIFF Returns the difference between 2 given periods.

QUARTER Returns the year quarter for the given date.

SECOND Returns the second of a given time or datetime.

SEC_TO_TIME Returns a time based on the given seconds.

STR_TO_DATE Creates a date and returns it based on the given string and format.

SUBDATE Same as DATE_SUB.

SUBTIME Subtracts a time interval (eg: 02:00) to a time or datetime (05:00)
and return the result (03:00).

SYSDATE Same as LOCALTIME.

TIME Returns the time from a given time or datetime.

TIME_FORMAT Returns the given time in the given format.

SQL Cheat Sheet 32

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

TIME_TO_SEC Converts and returns a time into seconds.

TIMEDIFF Returns the difference between 2 given time/datetime expressions.

TIMESTAMP Returns the datetime value of the given date or datetime.

TO_DAYS Returns the total number of days that have passed from ‘00-00-
0000’ to the given date.

WEEK Returns the week number for the given date.

WEEKDAY Returns the weekday number for the given date.

WEEKOFYEAR Returns the week number for the given date.

YEAR Returns the year from the given date.

YEARWEEK Returns the year and week number for the given date.

SQL Cheat Sheet 33

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

IN Returns the given number in binary.

BINARY Returns the given value as a binary string.

CAST Convert one type into another.

COALESCE From a list of values, return the first non-null value.

CONNECTION_ID For the current connection, return the unique connection ID.

CONV Convert the given number from one numeric base system into
another.

CONVERT Convert the given value into the given datatype or character set.

CURRENT_USER Return the user and hostname which was used to authenticate with
the server.

DATABASE Get the name of the current database.

GROUP BY

Used alongside aggregate functions (COUNT, MAX, MIN, SUM, AVG)
to group the results.

Example: Lists the number of users with active orders.

SELECT COUNT(user_id), active_orders
FROM users
GROUP BY active_orders;

HAVING

It’s used in the place of WHERE with aggregate functions.

Example: Lists the number of users with active orders, but only
include users with more than 3 active orders.

SELECT COUNT(user_id), active_orders
FROM users
GROUP BY active_orders
HAVING COUNT(user_id) > 3;

IF If the condition is true return a value, otherwise return another value.

IFNULL If the given expression equates to null, return the given value.

Misc Functions

SQL Cheat Sheet 34

WebsiteSetup.org - MySQL Cheat Sheet

Numeric Functions

Name Description

ISNULL If the expression is null, return 1, otherwise return 0.

LAST_INSERT_ID For the last row which was added or updated in a table, return the
auto increment ID.

NULLIF Compares the 2 given expressions. If they are equal, NULL is returned,
otherwise the first expression is returned.

SESSION_USER Return the current user and hostnames.

SYSTEM_USER Same as SESSION_USER.

USER Same as SESSION_USER.

VERSION Returns the current version of the MySQL powering the database.

SQL Cheat Sheet 35

WebsiteSetup.org - MySQL Cheat Sheet

In SQL, Wildcards are special characters used with the LIKE and NOT LIKE keywords which allow
us to search data with sophisticated patterns much more efficiently

Wildcard Characters

Wildcards

Name Description

%

Equates to zero or more characters.
Example 1: Find all users with surnames ending in ‘son’.

SELECT * FROM users

WHERE surname LIKE '%son';

Example 2: Find all users living in cities containing the pattern ‘che’

SELECT * FROM users

WHERE city LIKE '%che%';

_

Equates to any single character.

Example: Find all users living in cities beginning with any 3 characters, followed
by ‘chester’.

SELECT * FROM users

WHERE city LIKE '___chester';

[charlist]

Equates to any single character in the list.

Example 1: Find all users with first names beginning with J, H or M.

SELECT * FROM users

WHERE first_name LIKE '[jhm]%';

Example 2: Find all users with first names beginning letters between A–L.

SELECT * FROM users

WHERE first_name LIKE '[a-l]%';

Example 3: Find all users with first names not ending with letters between n–s.

SELECT * FROM users

WHERE first_name LIKE '%[!n-s]';

SQL Cheat Sheet 36

WebsiteSetup.org - MySQL Cheat Sheet

Keys

Primary Key

Example 1 (MySQL)

Example 2 (MySQL)

In relational databases, there is a concept of primary and foreign keys. In SQL tables, these are
included as constraints, where a table can have a primary key, a foreign key, or both.

A primary key allows each record in a table to be uniquely identified. There can only be one
primary key per table, and you can assign this constraint to any single or combination of columns.
However, this means each value within this column(s) must be unique.

Typically in a table, the primary key is an ID column, and is usually paired with the AUTO_
INCREMENT keyword. This means the value increases automatically as new records are created.

CREATE TABLE users (

id int NOT NULL AUTO_INCREMENT,

first_name varchar(255),

last_name varchar(255) NOT NULL,

address varchar(255),

email varchar(255),

PRIMARY KEY (id)

);

ALTER TABLE users

ADD PRIMARY KEY (first_name);

Create a new table and set the primary key to the ID column.

Alter an existing table and set the primary key to the first_name column.

SQL Cheat Sheet 37

WebsiteSetup.org - MySQL Cheat Sheet

Foreign Key
A foreign key can be
applied to one column
or many and is used to
link 2 tables together in a
relational database.

As seen in the diagram
below, the table containing
the foreign key is called
the child key, whilst the
table which contains
the referenced key, or
candidate key, is called the
parent table.

This essentially means
that the column data is
shared between 2 tables,
as a foreign key also
prevents invalid data from
being inserted which isn’t
also present in the parent
table.

Example 1 (MySQL)

Example 2 (MySQL)

CREATE TABLE orders (

id int NOT NULL,

user_id int,

product_id int,

PRIMARY KEY (id),

FOREIGN KEY (user_id) REFERENCES users(id),

FOREIGN KEY (product_id) REFERENCES products(id)

);

ALTER TABLE orders

ADD FOREIGN KEY (user_id) REFERENCES users(id);

Create a new table and turn any columns that reference IDs in other tables into foreign keys.

Alter an existing table and create a foreign key.

SQL Cheat Sheet 38

WebsiteSetup.org - MySQL Cheat Sheet

Indexes
Indexes are attributes that can be assigned to columns that are frequently searched against to
make data retrieval a quicker and more efficient process.

This doesn’t mean each column should be made into an index though, as it takes longer for a
column with an index to be updated than a column without. This is because when indexed columns
are updated, the index itself must also be updated.

Wildcards

Name Description

CREATE
INDEX

Creates an index named ‘idx_test’ on the first_name and surname columns of
the users table. In this instance, duplicate values are allowed.

CREATE INDEX idx_test

ON users (first_name, surname);

CREATE
UNIQUE
INDEX

Creates an index named ‘idx_test’ on the first_name and surname columns of
the users table. In this instance, duplicate values are allowed.

CREATE UNIQUE INDEX idx_test

ON users (first_name, surname);

DROP
INDEX

Creates an index named ‘idx_test’ on the first_name and surname columns of
the users table. In this instance, duplicate values are allowed.

ALTER TABLE users

DROP INDEX idx_test;

SQL Cheat Sheet 39

WebsiteSetup.org - MySQL Cheat Sheet

Joins
In SQL, a JOIN clause is used to return a results set which combines data from multiple tables,
based on a common column which is featured in both of them

There are a number of different joins available for you to use:

• Inner Join (Default): Returns any records which have matching values in both tables.

• Left Join: Returns all of the records from the first table, along with any matching records from
the second table.

• Right Join: Returns all of the records from the second table, along with any matching records
from the first.

• Full Join: Returns all records from both tables when there is a match.

A common way of visualising how joins work is like this:

In the following example,
an inner join will be used to
create a new unifying view
combining the orders table
and then 3 different tables

We’ll replace the user_id
and product_id with the
first_name and surname
columns of the user who
placed the order, along with
the name of the item which
was purchased.

Table 1 Table 2

INNER JOIN

Table 2Table 1

LEFT JOIN

Table 2Table 1

RIGHT JOIN

Table 2Table 1

OUTER JOIN

SQL Cheat Sheet 40

WebsiteSetup.org - MySQL Cheat Sheet

Would return a results set which looks like:

SELECT orders.id, users.first_name, users.surname, products.name as ‘product name’

FROM orders

INNER JOIN users on orders.user_id = users.id

INNER JOIN products on orders.product_id = products.id;

SQL Cheat Sheet 41

WebsiteSetup.org - MySQL Cheat Sheet

View
A view is essentially a SQL results set that get stored in the database under a label, so you can
return to it later, without having to rerun the query. These are especially useful when you have a
costly SQL query which may be needed a number of times, so instead of running it over and over
to generate the same results set, you can just do it once and save it as a view.

Creating Views

Replacing Views

Deleting Views

To create a view, you can do so like this:

With the CREATE OR REPLACE command, a view can be updated.

To delete a view, simply use the DROP VIEW command.

Then in future, if you need to access the stored result set, you can do so like this:

CREATE VIEW priority_users AS

SELECT * FROM users

WHERE country = ‘United Kingdom’;

CREATE OR REPLACE VIEW [priority_users] AS

SELECT * FROM users

WHERE country = ‘United Kingdom’ OR country=’USA’;

DROP VIEW priority_users;

SELECT * FROM [priority_users];

SQL Cheat Sheet 42

WebsiteSetup.org - MySQL Cheat Sheet

Try out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL Basics Cheat Sheet

SQL, or Structured Query Language, is a language to talk to
databases. It allows you to select specific data and to build
complex reports. Today, SQL is a universal language of data. It is
used in practically all technologies that process data.

SQL

SAMPLE DATA

CITY
id name country_id population rating
1 Paris 1 2243000 5
2 Berlin 2 3460000 3
...

COUNTRY
id name population area
1 France 66600000 640680
2 Germany 80700000 357000
...

ALIASES
COLUMNS
SELECT name AS city_name
FROM city;

TABLES
SELECT co.name, ci.name
FROM city AS ci
JOIN country AS co
 ON ci.country_id = co.id;

QUERYING MULTIPLE TABLES
INNER JOIN

SELECT city.name, country.name
FROM city
[INNER] JOIN country
 ON city.country_id = country.id;

CITY
id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

COUNTRY
id name
1 France
2 Germany
3 Iceland

JOIN (or explicitly INNER JOIN) returns rows that have
matching values in both tables.

LEFT JOIN

SELECT city.name, country.name
FROM city
LEFT JOIN country
 ON city.country_id = country.id;
CITY

id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

COUNTRY
id name
1 France
2 Germany

NULL NULL

LEFT JOIN returns all rows from the left table with
corresponding rows from the right table. If there's no
matching row, NULLs are returned as values from the second
table.

RIGHT JOIN

SELECT city.name, country.name
FROM city
RIGHT JOIN country
 ON city.country_id = country.id;

CITY
id name country_id
1 Paris 1
2 Berlin 2

NULL NULL NULL

COUNTRY
id name
1 France
2 Germany
3 Iceland

RIGHT JOIN returns all rows from the right table with
corresponding rows from the left table. If there's no
matching row, NULLs are returned as values from the left
table.

FULL JOIN

SELECT city.name, country.name
FROM city
FULL [OUTER] JOIN country
 ON city.country_id = country.id;
CITY

id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

NULL NULL NULL

COUNTRY
id name
1 France
2 Germany

NULL NULL
3 Iceland

FULL JOIN (or explicitly FULL OUTER JOIN) returns all rows
from both tables – if there's no matching row in the second
table, NULLs are returned.

CITY
country_id id name

6 6 San Marino
7 7 Vatican City
5 9 Greece
10 11 Monaco

COUNTRY
name id

San Marino 6
Vatican City 7

Greece 9
Monaco 10

NATURAL JOIN

SELECT city.name, country.name
FROM city
NATURAL JOIN country;

NATURAL JOIN will join tables by all columns with the same
name.

NATURAL JOIN used these columns to match rows:
city.id, city.name, country.id, country.name
NATURAL JOIN is very rarely used in practice.

CROSS JOIN

SELECT city.name, country.name
FROM city
CROSS JOIN country;

SELECT city.name, country.name
FROM city, country;

CROSS JOIN returns all possible combinations of rows from
both tables. There are two syntaxes available.

CITY
id name country_id
1 Paris 1
1 Paris 1
2 Berlin 2
2 Berlin 2

COUNTRY
id name
1 France
2 Germany
1 France
2 Germany

QUERYING SINGLE TABLE
Fetch all columns from the country table:

SELECT *
FROM country;

Fetch id and name columns from the city table:

SELECT id, name
FROM city;

SELECT name
FROM city
ORDER BY rating DESC;

Fetch city names sorted by the rating column
in the DESCending order:

SELECT name
FROM city
ORDER BY rating [ASC];

Fetch city names sorted by the rating column
in the default ASCending order:

SELECT name
FROM city
WHERE name LIKE '_ublin';

Fetch names of cities that start with any letter followed by
'ublin' (like Dublin in Ireland or Lublin in Poland):

SELECT name
FROM city
WHERE name != 'Berlin'
 AND name != 'Madrid';

Fetch names of cities that are neither Berlin nor Madrid:

SELECT name
FROM city
WHERE rating IS NOT NULL;

Fetch names of cities that don't miss a rating value:

SELECT name
FROM city
WHERE country_id IN (1, 4, 7, 8);

Fetch names of cities that are in countries with IDs 1, 4, 7, or 8:

FILTERING THE OUTPUT

SELECT name
FROM city
WHERE rating > 3;

Fetch names of cities that have a rating above 3:

COMPARISON OPERATORS

SELECT name
FROM city
WHERE name LIKE 'P%'
 OR name LIKE '%s';

Fetch names of cities that start with a 'P' or end with an 's':

TEXT OPERATORS

SELECT name
FROM city
WHERE population BETWEEN 500000 AND 5000000;

Fetch names of cities that have a population between
500K and 5M:

OTHER OPERATORS

https://learnsql.com/
https://learnsql.com/course/sql-queries

Selecting tables, columns, and rows:

SQL Cheat Sheet: Fundamentals
Performing calculations with SQL

Display the whole table:
SELECT

FROM
*
table_name;

Performing a single calculation:
SELECT 1320+17;

Performing multiple calculations:
SELECT 1320+17, 1340-3, 7*191, 8022/6;

Performing calculations with multiple numbers:
SELECT 1*2*3, 1+2+3;

Renaming results:
SELECT 2*3 AS mult, 1+2+3 AS nice_sum;

SELECT
FROM

Remember: The order of clauses matters in SQL. SQL
uses the following order of precedence: FROM, SELECT,
LIMIT.

column_name_1, column_name_2
table_name;

Display the first 10 rows on a table:
SELECT

FROM
LIMIT

*
table_name;
10;

Adding comments to your SQL queries

Adding single-line comments:

SELECT
FROM

-- First comment
column_1, column_2, column_3 -- Second comment
table_name; -- Third comment

Adding block comments:

SELECT
FROM

/*
This comment
spans over
multiple lines
 */

column_1, column_2, column_3
table_name;

Select specific columns from a table:

Many of these examples use table and column names from
the real SQL databases that learners work with in our
interactive SQL courses. For more information, sign up for a
free account and try one out!

SELECT column_name_1, column_name_2 FROM table_name_1
INNER JOIN table_name_2 ON table_name_1.column_name_1
 = table_name_2.column_name_1;

Joining data in SQL:

SQL Intermediate:
Joins & Complex Queries

Joining tables with INNER JOIN:

SELECT * FROM facts
LEFT JOIN cities ON cities.facts_id = facts.id;

Joining tables using a LEFT JOIN:

SELECT f.name country, c.name city
FROM cities c
RIGHT JOIN facts f ON f.id = c.facts;

Joining tables using a RIGHT JOIN:

SELECT f.name country, c.name city
FROM cities c
FULL OUTER JOIN facts f ON f.id = c.facts_id;

Joining tables using a FULL OUTER JOIN:

SELECT name, migration_rate FROM FACTS
ORDER BY 2 desc; -- 2 refers to migration_rate column

Sorting a column without specifying a column name:

SELECT c.name capital_city, f.name country
FROM facts f
INNER JOIN (
 SELECT * FROM cities
 WHERE capital = 1
) c ON c.facts_id = f.id
INNER 10

Using a join within a subquery, with a limit:

SELECT [column_names] FROM [table_name_one]
 [join_type] JOIN [table_name_two] ON [join_constraint]
 [join_type] JOIN [table_name_three] ON [join_constraint]
 ...
 ...
 ...
 [join_type] JOIN [table_name_three] ON [join_constraint]

Joining data from more than two tables:

SELECT
 album_id,
 artist_id,
 "album id is " || album_id col_1,
 "artist id is " || artist_id col2,
 album_id || artist_id col3
FROM album LIMIT 3;

Combining columns into a single column:

SELECT
 first_name,
 last_name,
 phone
FROM customer
WHERE first_name LIKE "%Jen%";

Matching part of a string:

CASE
 WHEN [comparison_1] THEN [value_1]
 WHEN [comparison_2] THEN [value_2]
 ELSE [value_3]
 END
AS [new_column_name]

Using if/then logic in SQL with CASE:

WITH track_info AS
(
 SELECT
 t.name,
 ar.name artist,
 al.title album_name,
 FROM track t
 INNER JOIN album al ON al.album_id = t.album_id
 INNER JOIN artist ar ON ar.artist_id = al.artist_id
)
SELECT * FROM track_info
WHERE album_name = "Jagged Little Pill";

Using the WITH clause:

CREATE VIEW chinook.customer_2 AS
SELECT * FROM chinook.customer;

Creating a view:

Other common SQL operations:

[select_statement_one]
UNION
[select_statement_two];

Selecting rows that occur in one or more SELECT statements:

SELECT * from customer_usa
INTERSECT
SELECT * from customer_gt_90_dollars;

Selecting rows that occur in both SELECT statements:

SELECT * from customer_usa
EXCEPT
SELECT * from customer_gt_90_dollars;

Selecting rows that occur in the first SELECT statement but
not the second SELECT statement:

DROP VIEW chinook.customer_2;

Dropping a view

WITH
usa AS
 (
 SELECT * FROM customer
 WHERE country = "USA"
),
last_name_g AS
 (
 SELECT * FROM usa
 WHERE last_name LIKE "G%"
),
state_ca AS
 (
 SELECT * FROM last_name_g
 WHERE state = "CA"
)
SELECT
 first_name,
 last_name,
 country,
 state
FROM state_ca

Chaining WITH statements:

Important Concepts and Resources:
Reserved words

Reserved words are words that cannot be used as identifiers (such as variable names or function names) in a programming
language, because they have a specific meaning in the language itself. Here is a list of reserved words in SQL.

Try out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL Basics Cheat Sheet

• avg(expr) − average value for rows within the group

• count(expr) − count of values for rows within the group

• max(expr) − maximum value within the group

• min(expr) − minimum value within the group

• sum(expr) − sum of values within the group

AGGREGATE FUNCTIONS

CYCLING
id name country
1 YK DE
2 ZG DE
3 WT PL
...

SKATING
id name country
1 YK DE
2 DF DE
3 AK PL
...

AGGREGATION AND GROUPING
GROUP BY groups together rows that have the same values in specified columns.
It computes summaries (aggregates) for each unique combination of values.

SUBQUERIES
A subquery is a query that is nested inside another query, or inside another subquery.
There are different types of subqueries.

SET OPERATIONS
Set operations are used to combine the results of two or more queries into a
single result. The combined queries must return the same number of columns and
compatible data types. The names of the corresponding columns can be different.

CITY
country_id count

1 3
2 3
4 2

CITY
id name country_id
1 Paris 1
101 Marseille 1
102 Lyon 1
2 Berlin 2
103 Hamburg 2
104 Munich 2
3 Warsaw 4
105 Cracow 4

EXAMPLE QUERIES

SELECT COUNT(*)
FROM city;

Find out the number of cities:

SELECT COUNT(rating)
FROM city;

Find out the number of cities with non-null ratings:

SELECT COUNT(DISTINCT country_id)
FROM city;

Find out the number of distinctive country values:

SELECT MIN(population), MAX(population)
FROM country;

Find out the smallest and the greatest country populations:

SELECT country_id, SUM(population)
FROM city
GROUP BY country_id;

Find out the total population of cities in respective countries:

SELECT country_id, AVG(rating)
FROM city
GROUP BY country_id
HAVING AVG(rating) > 3.0;

Find out the average rating for cities in respective countries if the average is above 3.0:

UNION

SELECT name
FROM cycling
WHERE country = 'DE'
UNION / UNION ALL
SELECT name
FROM skating
WHERE country = 'DE';

UNION combines the results of two result sets and removes duplicates.
UNION ALL doesn't remove duplicate rows.

This query displays German cyclists together with German skaters:

INTERSECT

SELECT name
FROM cycling
WHERE country = 'DE'
INTERSECT
SELECT name
FROM skating
WHERE country = 'DE';

INTERSECT returns only rows that appear in both result sets.

This query displays German cyclists who are also German skaters at the same time:

EXCEPT

SELECT name
FROM cycling
WHERE country = 'DE'
EXCEPT / MINUS
SELECT name
FROM skating
WHERE country = 'DE';

EXCEPT returns only the rows that appear in the first result set but do not appear
in the second result set.

This query displays German cyclists unless they are also German skaters at the
same time:

SINGLE VALUE

SELECT name FROM city
WHERE rating = (
 SELECT rating
 FROM city
 WHERE name = 'Paris'
);

The simplest subquery returns exactly one column and exactly one row. It can be
used with comparison operators =, <, <=, >, or >=.

This query finds cities with the same rating as Paris:

MULTIPLE VALUES

SELECT name
FROM city
WHERE country_id IN (
 SELECT country_id
 FROM country
 WHERE population > 20000000
);

A subquery can also return multiple columns or multiple rows. Such subqueries can be
used with operators IN, EXISTS, ALL, or ANY.

This query finds cities in countries that have a population above 20M:

CORRELATED

SELECT *
FROM city main_city
WHERE population > (
 SELECT AVG(population)
 FROM city average_city
 WHERE average_city.country_id = main_city.country_id
);

This query finds countries that have at least one city:
SELECT name
FROM country
WHERE EXISTS (
 SELECT *
 FROM city
 WHERE country_id = country.id
);

A correlated subquery refers to the tables introduced in the outer query. A correlated
subquery depends on the outer query. It cannot be run independently from the outer
query.

This query finds cities with a population greater than the average population in the
country:

https://learnsql.com/
https://learnsql.com/course/sql-queries

