
A javascript library for building user interfaces.
React Cheat Sheet DEMO: https://s.codepen.io/ericnakagawa/debug/ALxakj

GITHUB: https://github.com/facebook/react
DOCUMENTATION: https://facebook.github.io/react/docs/
CDN: https://cdnjs.com/libraries/react/

Coming Soon!

React.js 101

http://bit.ly/get-react-101

Free Online Course

The Quickest Way To Get
Started With React.js

Created with ♥ by Petr Tichy, happy coding! v0.8 https://www.ihatetomatoes.net

Hello World

// Import React and ReactDOM
import React from 'react'
import ReactDOM from 'react-dom'

// Render component into the DOM - only once per app
ReactDOM.render(
 <h1>Hello, world!</h1>,
 document.getElementById('root')
);

ES6 Class

Stateless Components

// Stateless React Component
const Headline = () => {
 return <h1>React Cheat Sheet</h1>
}

// Component that receives props
const Greetings = (props) => {
 return <p>You will love it {props.name}.</p>
}

// Component must only return ONE element (eg. DIV)
const Intro = () => {
 return (
 <div>
 <Headline />
 <p>Welcome to the React world!</p>
 <Greetings name=”Petr” />
 </div>
)
}

ReactDOM.render(
 <Intro />,
 document.getElementById('root')
);

// Components and Props API - http://bit.ly/react-props
// CodePen Demo: http://bit.ly/react-simple

// conditional rendering of elements and CSS class
render() {
 const {isLoggedIn, username} = this.state;
 return (
 <div className={`login ${isLoggedIn ? 'is-in'
: 'is-out'}`}>
 {
 !!isLoggedIn ?
 <p>Logged in as {username}.</p>
 :
 <p>Logged out.</p>
 }
 </div>
)
}
// CodePen Demo: http://bit.ly/react-if-statements

Conditional Rendering

Tools and Resources

// Create React App
 http://bit.ly/react-app
// React Dev Tools for Chrome
 http://bit.ly/react-dev-tools
// React Code Snippets for Visual Studio Code
 http://bit.ly/react-es6-snippets-for-vscode
// Babel for Sublime Text 3
 http://bit.ly/babel-sublime

Li
fe

cy
cl

e
M

et
ho

ds

// use class for local state and lifecycle hooks
class App extends React.Component {

 constructor(props) {
 // fires before component is mounted
 super(props); // makes this refer to this component
 this.state = {date: new Date()}; // set state
 }
 render() {
 return (
 <h1>
 It is {this.state.date.toLocaleTimeString()}.
 </h1>
)
 }

 componentWillMount() {
 // fires immediately before the initial render
 }
 componentDidMount() {
 // fires immediately after the initial render
 }
 componentWillReceiveProps() {
 // fires when component is receiving new props
 }
 shouldComponentUpdate() {
 // fires before rendering with new props or state
 }
 componentWillUpdate() {
 // fires immediately before rendering
 // with new props or state
 }
 componentDidUpdate() {
 // fires immediately after rendering with new P or S
 }
 componentWillUnmount() {
 // fires immediately before component is unmounted
 // from DOM (removed)
 }
}
 // CodePen Demo: http://bit.ly/react-es6-class

Co
re

React is an open source, front-end, JavaScript library for building user interfaces or UI components like Vue.js,
It gives us the ability to create components, layouts etc in our application. In this article we will go through all
the fundamentals of Reactjs in this React Cheat Sheet.

Installation
Using react in our application is quite easy as we can add it using CDN or by using the CLI to install it from
npm.

To add React using the CDN, add this script tags in your html

<script crossorigin src="https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>

Or you can install it using NPM:

npm install react react-dom --save

Using create-react-app
Create React App is a tool that gives you a massive head start when building React apps. It gives us the
ability to scaffold a new react project with no configuration. We can install this globally on our local machine by
running this command on our terminal:

npm install -g create-react-app

The -g command will install it globally on our local machine.

With this installed, we can now scaffold a react project using this command:

create-react-app <name of project>

When the setup is completed, we can now move into the project and then download the projects dependencies

cd <name of project>

npm install --save

After install, to server your application, run npm start on your terminal.

React DOM
To setup a simple react DOM, we can import ReactDOM, this is what we will use for rendering.

import React from "react";

import ReactDOM from "react-dom";

//define a template

const warning = <h1>Hello,I'm Sunil</h1>;

// ReactDOM.render(root node, mounting point)

ReactDOM.render(warning, document.getElementById("root"));

The ReactDOM.render() function takes two arguments, HTML code and an HTML element where the code

will be mounted.

Functional Component
This is otherwise known as a stateless component which is just a plain javascript function which takes props as
an argument and returns a react element:

import React from 'react';

const Button = () =>

 <button> Apply</button>

export default Button;

Now to use this component, we can do this:

import React from 'react';

const Button = ({ onClick, className = 'button', children }) =>

 <button

 onClick={ onClick }

 className={ className }

 type='button'

 >

 { children }

 </button>

export default Button;

Class Component

A Class component acts like a function that receives props, but that function also considers a private internal
state as additional input that controls the returned JSX.

import React, { Component } from 'react';

class MyComponent extends Component {

 render() {

 return (

 <div className="main">

 <h1>Helo Devas</h1>

 </div>

);

 }

}

export default MyComponent;

We can pass in some states:

import React, { Component } from 'react';

class MyComponent () extends Compnent {

 constructor (props) {

 super(props);

 this.state = { message: 'Helo Devas' }

 };

 render() {
 return (

 <div className="main">

 <h1>{ this.state.message }</h1>

 </div>

);

 }

}

export default MyComponent;

Lifecycle Hooks
React component passes through 3 phases which are Mounting, Updating and Unmounting. When a
component is about to mounted, React calls 4 built-in-methods:

Constructor()

getDerivedStateFromProps()

render()

ComponentDidMount()

Mounting Phases
Constructor()

This method called before anything else in the component, when the component is initiated, and it is the natural
place to set up the initial state and other initial values. This method passes a prop as a parameter and always
start by calling super(props) before setting any state or anything else.

class Footer extends React.Component {

constructor(props) {

 super(props);

 this.state = {name: "Sunil"};

 }

 render() {

 return (

 <h1>My name is {this.state.name}</h1>

);

 }

}

ReactDOM.render(<Footer />, document.getElementById('root'));

getDerivedStateFromProps()

The method gets called before rendering elements in the DOM. It is invoked after a component is instantiated
as well as when it receives new props.

class Footer extends React.Component {

constructor(props) {

 super(props);
 this.state = {name: "Sunil"};

 }

static getDerivedStateFromProps(props, state) {

 return {name: props.favcol };

 }

 render() {

 return (

 <h1>My name is {this.state.name}</h1>

);

 }

}

ReactDOM.render(<Footer />, document.getElementById('root'));

Render()

This method outputs the defined HTML into the DOM. This is a required method.

class Footer extends React.Component {

 render() {

 return (

 <h1>This template will be rendered using the render function</h1>

);

 }

}

ReactDOM.render(<Footer />, document.getElementById('root'));

ComponentDidMount()

This method gets called immediately after the component is rendered. This is the best place to write statements
that requires that the component is already placed in the DOM.

class Footer extends React.Component {

constructor(props) {

 super(props);
 this.state = {name: "Sunil"};

 }

 componentDidMount() {

 // Everything here runs after the component has been mounted

 }

 render() {

 return (
 <h1>My name is {this.state.name}</h1>

);

 }

}

ReactDOM.render(<Footer />, document.getElementById('root'));

Updating Phase
The component updates whenever there is a change in the component state or props. Some react built-in
method gets called when the component is in this state.

getDerivedStateFromProps :This method gets called immediately a component is updated. This basically does

the same thing as the method in the mounting phase.

ShouldComponentUpdate : This method returns a boolean(True or False) which specifies whether React should

continue with the rendering or not.

shouldComponentUpdate() {

 return true;

 }

render :This method gets called when the component is updated. It re-renders the HTML to the DOM with

the new values:

render() {

 return (

 <h1>This is component is changed</h1>

);

 }

 }

 ReactDOM.render(<Footer />, document.getElementById('root'));

getSnapshotBeforeUpdate : This method gives you the ability to have access to the props and state before the

component is updated.

getSnapshotBeforeUpdate(prevProps, prevState) {

 // get acces to the prepious state here

 }

ComponentDidUpdate : This method gets called after the component has been updated.

componentDidUpdate() {
 // do something gere.

 // log the presents state of the component

 }

Unmounting Phase
This is a state where react removes a component from the DOM. This phase comes with
a componentWillUnmount built-in method. The method gets called when the component is about to be removed:

componentWillUnmount() {

 alert("Component has been removed");

 }

Props
Props is a concept used in passing data from one component to another. basically it is used for data
communication:

import React, { Component } from 'react';

class App extends Component {

 render() {

 return (
 <div className="app">

 <p>My App {this.props.name}</p>

 </div>

);

 }

}

//passing the data into the component
class Index extends Component {

 render() {

 return (

 <div className="app">

 <App name="Sunil"/>

 </div>

);

 }

}

export default Index;

React Map
We can iterate through items using the map method. Just like you could use it in Vanilla js, we can have an array

of items and then use the map method:

let test = [1,2,3,4,5,6];

const numberList = test.map(number=>console.log(number))

We can also use it in our react component like this:

function App() {

 const people = ['Wisdom', 'Ekpot', 'Sunil','Nirav'];

 return (

 {people.map(person => <Person key={person} name={person} />)}

);

}

Here we are passing it as an array to the component.

Events
Just like any other framework or library, we have the ability to bind event listeners to our template, this events
listen to methods defined. In React, we could define a click event like this:

function App() {

function logSomething() {

 console.log(`Hello i'm sunil`)

 }

return (

 <div>

 <button onClick={logSomething}>Submit</button>

 </div>

);

}

We can also use the change event listeners too on input fields:

function App() {

function detectChange() {

 console.log(`Changing`)

 }

return (

 <div>

 <input type="text" name="myInput" onChange={detectChange} />

 </div>

);

}

State
State is basically storing of data. We can store objects, arrays, strings and then use them in our react
components. To use data stored in the state, we can use this keyword

import React, { Component } from 'react';

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {messages: 0};

 }

 render() {

 return (

 <div className="app">

 <p>My messages: {this.state.messages}</p>

 </div>

);
 }

}

export default App;

React HMR
The hot module reload retains the application state which is lost during a full reload. It saves compilation time
as it only updates what was changed and not the entire application:

import React, { Component } from 'react';

import ReactDOM from 'react-dom';

import MyComponent from './MyComponent';

ReactDOM.render(<MyComponent />, document.getElementById('root'));

if (module.hot) {

 module.hot.accept();

}

React Router
To handling routing in react, we have to install the react-router using NPM:

npm i --save react-router-dom

To route to a component, we can use the <Route /> tag which takes the path and the component we routing to

as an attribute:

import {

 BrowserRouter,

 Route

} from 'react-router-dom'

const Hello = () => <h1>Hello world!</h1>

const App = () => (

 <BrowserRouter>

 <div>

 <Route path="/hello" component={Hello} />

 </div>

 </BrowserRouter>

)

React State Hooks
This is basically a state management system. To use this, we have to import useState from react. Let’s write a

simple method which will increment the value of a state when a button is clicked:

import React, { useState } from 'react';

function Example() {

 // Declare a new state variable, which we'll call "count"
 const [count, setCount] = useState(0);

return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>
 </div>

);

}

React for Beginners 2021 1

React for Beginners (2021)
React Basics

What is React, really?
React is officially defined as a "JavaScript library for creating user interfaces,"
but what does that really mean?

React is a library, made in JavaScript and which we code in JavaScript, to
build great applications that run on the web.

What do I need to know for React?
In other words, you do need to have a basic understanding of JavaScript to
become a solid React programmer.

The most basic JavaScript concepts you should be familiar with are variables,
basic data types, conditionals, array methods, functions, and ES modules.

How do I learn all of these JavaScript skills? Check out the comprehensive
guide to learn all of the JavaScript you need for React.

If React was made in JavaScript, why don't we just use
JavaScript?

While React was written in JavaScript, which was built from the ground up for
the express purpose of building web applications and gives us tools to do so.

JavaScript is a 20 year old language which was created for adding small bits
of behavior to the browser through scripts and was not designed for creating
complete applications.

In other words, while JavaScript was used to create React, they were created
for very different purposes.

Can I use JavaScript in React applications?
Yes! Any valid JavaScript code can be included within your React applications.

You can use any browser or window API, such as geolocation or the fetch API.

https://reactbootcamp.com/javascript-skills-for-react-2021/

React for Beginners 2021 2

Also, since React (when it is compiled) runs in the browser, you can perform
common JavaScript actions like DOM querying and manipulation.

How to Create React Apps

Three different ways to create a React application
 Putting React in an HTML file with external scripts

 Using an in-browser React environment like CodeSandbox

 Creating a React app on your computer using a tool like Create React App

What is the best way to create a React app?
Which is the best approach for you? The best way to create your application
depends on what you want to do with it.

If you want to create a complete web application that you want to ultimately
push to the web, it is best to create that React application on your computer
using a tool like Create React App.

If you are interested in creating React apps on your computer, check out the
complete guide to using Create React App.

The easiest and most beginner-friendly way to create and build React apps for
learning and prototyping is to use a tool like CodeSandbox. You can create a
new React app in seconds by going to react.new!

JSX Elements

JSX is a powerful tool for structuring applications
JSX is meant to make create user interfaces with JavaScript applications
easier.

JSX borrows its syntax from the most widely used programming language:
HTML

As a result, JSX is a powerful tool to structure our applications.

https://reactbootcamp.com/create-react-app-10-steps/
https://react.new/

React for Beginners 2021 3

The code example below is the most basic example of a React element which
displays the text "Hello World"

<div>Hello React!</div>

To be displayed in the browser, React elements need to
be rendered (using ReactDOM.render())

How JSX differs from HTML
We can write valid HTML element in JSX, but what differs slightly is the way
some attributes are written.

Attributes that consist of multiple words are written in the camel-case syntax
(i.e. className) and have different names than standard HTML (class).

<div id="header">
 <h1 className="title">Hello React!</h1>
</div>

The reason JSX has this different way of writing attributes is because it is
actually made using JavaScript functions (more on this later).

JSX must have a trailing slash if it is made of one tag
Unlike standard HTML, elements like input , img , or br must close with a
trailing forward slash for it to be valid JSX.

<input type="email" />// <input type="email"> is a syntax error

JSX elements with two tags must have a closing tag
Elements that should have two tags, such as div , main or button , must have
their closing, second tag in JSX, otherwise it will result in a syntax error.

<button>Click me</button>// <button> or </button> is a syntax error

React for Beginners 2021 4

How JSX elements are styled
Inline styles are written differently as well as compared to plain HTML.

Inline styles must not be included as a string, but within an object.

Once again, the style properties that we use must be written in the camel-
case style.

<h1 style={{ color: "blue", fontSize: 22, padding: "0.5em 1em" }}>
 Hello React!
</h1>;

Style properties that accept pixel values (like width, height,
padding, margin, etc), can use integers instead of strings. For
example, fontSize: 22 instead of fontSize: "22px"

JSX can be conditionally displayed
New React developers may be wondering how it is beneficial that React can
use JavaScript code.

One simple example if that to conditionally hide or display JSX content, we can
use any valid JavaScript conditional, like an if statement or switch statement.

const isAuthUser = true;

if (isAuthUser) {
 return <div>Hello user!</div>
} else {
 return <button>Login</button>
}

Where are we returning this code? Within a React component, which we will
cover in a later section.

JSX cannot be understood by the browser
As mentioned above, JSX is not HTML, but composed of JavaScript functions.

React for Beginners 2021 5

In fact, writing <div>Hello React</div> in JSX is just a more convenient and
understandable way of writing code like the following:

React.createElement("div", null, "Hello React!")

Both pieces of code will have the same output of "Hello React".

To write JSX and have the browser understand this different syntax, we must
use a transpiler to convert JSX to these function calls.

The most common transpiler is called Babel.

Components

What are React components?
Instead of just rendering one or another set of JSX elements, we can include
them within React components.

Components are created using what looks like a normal JavaScript function,
but is different in that it returns JSX elements.

function Greeting() {
 return <div>Hello React!</div>;
}

Why use React components?
React components allow us to create more complex logic and structures within
our React application than we would with JSX elements alone.

Think of React components as our custom React elements that have their own
functionality.

As we know, functions allow us to create our own functionality and reuse it
where we like across our application.

Components are reusable wherever we like across our app and as many times
as we like.

React for Beginners 2021 6

Components are not normal JavaScript functions
How would we render or display the returned JSX from the component above?

import React from 'react';
import ReactDOM from 'react-dom';

function Greeting() {
 return <div>Hello React!</div>;
}

ReactDOM.render(<Greeting />, document.getElementById("root));

We use the React import to parse the JSX and ReactDOM to render our
component to a root element with the id of "root."

What can components return?
Components can return valid JSX elements, as well as strings, numbers,
booleans, the value null , as well as arrays and fragments.

Why would we want to return null ? It is common to return null if we want a
component to display nothing.

function Greeting() {
 if (isAuthUser) {
 return "Hello again!";
 } else {
 return null;
 }
}

Another rule is that JSX elements must be wrapped in one parent element.
Multiple sibling elements cannot be returned.

If you need to return multiple elements, but don't need to add another element
to the DOM (usually for a conditional), you can use a special React component
called a fragment.

Fragments can be written as <></> or when you import React into your file,
with <React.Fragment></React.Fragment> .

React for Beginners 2021 7

function Greeting() {
 const isAuthUser = true;

 if (isAuthUser) {
 return (
 <>
 <h1>Hello again!</h1>
 <button>Logout</button>
 </>
);
 } else {
 return null;
 }
}

Note that when attempting to return a number of JSX elements
that are spread over multiple lines, we can return it all using a
set of parentheses () as you see in the example above.

Components can return other components
The most important thing components can return is other components.

Below is a basic example of a React application contained with in a component
called App that returns multiple components:

import React from 'react';
import ReactDOM from 'react-dom';

import Layout from './components/Layout';
import Navbar from './components/Navbar';
import Aside from './components/Aside';
import Main from './components/Main';
import Footer from './components/Footer';

function App() {
 return (
 <Layout>
 <Navbar />
 <Main />
 <Aside />
 <Footer />
 </Layout>
);
}

React for Beginners 2021 8

ReactDOM.render(<App />, document.getElementById('root'));

What is powerful about this is that we are using the customization of
components to describe what they are (i.e. Layout) and their function in our
application. This tells us how they should be used just by looking at their
name.

Additionally, we are using the power of JSX to compose these components. In
other words, to use the HTML-like syntax of JSX to structure them in an
immediately understandable way (i.e. the Navbar is at the top of the app, the
Footer at the bottom, etc).

JavaScript can be used in JSX using curly braces
Just as we can use JavaScript variables within our components, we can use
them directly within our JSX as well.

There are a few core rules to using dynamic values within JSX, however.

JSX can accept any primitive values (strings, booleans, numbers), but it will
not accept plain objects.

JSX can also include expressions that resolve to these values.

For example, conditionals can be included within JSX using the ternary
operator, since it resolves to a value.

function Greeting() {
 const isAuthUser = true;

 return <div>{isAuthUser ? "Hello!" : null}</div>;
}

Props

Components can be passed values using props
Data passed to components in JavaScript are called props

React for Beginners 2021 9

Props look identical to attributes on plain JSX/HTML elements, but you can
access their values within the component itself

Props are available in parameters of the component to which they are passed.
Props are always included as properties of an object

ReactDOM.render(
 <Greeting username="John!" />,
 document.getElementById("root")
);

function Greeting(props) {
 return <h1>Hello {props.username}</h1>;
}

Props cannot be directly changed
Props must never be directly changed within the child component.

Another way to say this is that props should never be mutated, since props
are a plain JavaScript object

// We cannot modify the props object:function Header(props) {
 props.username = "Doug";

 return <h1>Hello {props.username}</h1>;
}

Components are consider pure functions. That is, for every
input, we should be able to expect the same output. This
means we cannot mutate the props object, only read from it.

Special props: the children prop
The children prop is useful if we want to pass elements / components as
props to other components

The children prop is especially useful for when you want the same component
(such as a Layout component) to wrap all other components.

React for Beginners 2021 10

function Layout(props) {
 return <div className="container">{props.children}</div>;
}

function IndexPage() {
 return (
 <Layout>
 <Header />
 <Hero />
 <Footer />
 </Layout>
);
}

function AboutPage() {
 return (
 <Layout>
 <About />
 <Footer />
 </Layout>
);
}

The benefit of this pattern is that all styles applied to the Layout component
will be shared with its child components.

Lists and Keys

Iterate over arrays in JSX using map
How do we displays lists in JSX using array data?

Use the .map() function to convert lists of data (arrays) into lists of elements.

const people = ["John", "Bob", "Fred"];
const peopleList = people.map((person) => <p>{person}</p>);

.map() can be used for components as well as plain JSX elements.

function App() {
 const people = ["John", "Bob", "Fred"];

 return (

React for Beginners 2021 11

 {people.map((person) => (
 <Person name={person} />
))}

);
}

function Person({ name }) {
// we access the 'name' prop directly using object destructuringreturn <p>This person's na
me is: {name}</p>;
}

The importance of keys in lists
Each React element within a list of elements needs a special key prop

Keys are essential for React to be able to keep track of each element that is
being iterated over with the .map() function

React uses keys to performantly update individual elements when their data
changes (instead of re-rendering the entire list)

Keys need to have unique values to be able to identify each of them according
to their key value

function App() {
 const people = [
 { id: "Ksy7py", name: "John" },
 { id: "6eAdl9", name: "Bob" },
 { id: "6eAdl9", name: "Fred" },
];

 return (

 {people.map((person) => (
 <Person key={person.id} name={person.name} />
))}

);
}

State and Managing Data

What is state?

React for Beginners 2021 12

State is a concept that refers to how data in our application changes over
time.

The significance of state in React is that it is a way to talk about our data
separately from the user interface (what the user sees).

We talk about state management, because we need an effective way to keep
track of and update data across our components as our user interacts with it.

To change our application from static HTML elements to a dynamic one that
the user can interact with, we need state.

Common examples of using state
We need to manage state often when our user wants to interact with our
application.

When a user types into a form, we keep track of the form state in that
component.

When we fetch data from an API to display to the user (i.e. posts in a blog), we
need to save that data in state.

When we want to change data that a component is receiving from props, we
use state to change it instead of mutating the props object.

Introduction to React hooks with useState
The way to "create" state is React within a particular component is with
the useState hook.

What is a hook? It is very much like a JavaScript function, but can only be used
in a React function component at the top of the component.

We use hooks to "hook into" certain features and useState gives us the ability
to create and manage state.

useState is an example of a core React hook that comes directly from the
React library: React.useState .

import React from 'react';

function Greeting() {

React for Beginners 2021 13

 const state = React.useState("Hello React");

 return <div>{state[0]}</div>// displays "Hello React"}

How does useState work? Like a normal function, we can pass it a starting
value (i.e. "Hello React").

What is returned from useState is an array. To get access to the state variable
and its value, we can use the first value in that array: state[0] .

There is a way to improve how we write this, however. We can use array
destructuring to get direct access to this state variable and call it what we like,
i.e. title .

import React from 'react';

function Greeting() {
 const [title] = React.useState("Hello React");

 return <div>{title}</div>// displays "Hello React"}

What if we want to allow our user to update the greeting they see?

If we include a form, a user can type in a new value. However, we need a way
to update the initial value of our title.

import React from "react";

function Greeting() {
 const [title] = React.useState("Hello React");

 return (
 <div>
 <h1>{title}</h1>
 <input placeholder="Update title" />
 </div>
);
}

We can do so with the help of the second element in the array that useState
returns. It is a setter function, to which we can pass whatever value we want
the new state to be.

React for Beginners 2021 14

In our case, we want to get the value that is typed into the input when a user
is in the process of typing. We can get it with the help of React events.

What are events in React?
Events are ways to get data about a certain action that a user has performed
in our app.

The most common props used to handle events are onClick (for click
events), onChange (when a user types into an input), and onSubmit (when a form
is submitted.

Event data is given to us by connecting a function to each of these props
listed (there are many more to choose from than these three).

To get data about the event when our input is changed, we can
add onChange on input and connect it to a function that will handle the event.
This function will be called handleInputChange :

import React from "react";

function Greeting() {
 const [title] = React.useState("Hello React");

 function handleInputChange(event) {
 console.log("input changed!", event);
 }

 return (
 <div>
 <h1>{title}</h1>
 <input placeholder="Update title" onChange={handleInputChange} />
 </div>
);
}

Note that in the code above, a new event will be logged to the
browser's console whenever the user types into the input

Event data is provided to us as an object with many properties which are
dependent upon the type of event.

React for Beginners 2021 15

Updating state with useState
To update state with useState, we can use the second element that useState
returns to us in its array.

This element is a function that will allow us to update the value of the state
variable (the first element)

Whatever we pass to this setter function when we call it will be put in state.

import React from "react";

function Greeting() {
 const [title, setTitle] = React.useState("Hello React");

 function handleInputChange(event) {
 setTitle(event.target.value);
 }

 return (
 <div>
 <h1>{title}</h1>
 <input placeholder="Update title" onChange={handleInputChange} />
 </div>
);
}

Using the code above, whatever the user types into the input (the text comes
from event.target.value) will be put in state using setTitle and displayed within
the h1 element.

What is special about state and why it must be managed with a dedicated
hook like useState is because a state update (such as when we
call setTitle causes a re-render.

A re-render is when a certain component renders or is
displayed again based off the new data. If our components
weren't re-rendered when data changed, we would never see
the app's appearance change at all!

