
1

The ULTIMATE JavaScript
Fundamentals Guide

Terms & Definitions

● \n
● + operator
● Addition

operator
● alert()
● API
● API parameters
● API URL
● append()
● Arguments
● Arithmetic

operators
● Arrays
● Assignment

operator
● async keyword
● await keyword
● Block scope
● Boolean
● Boolean data

type
● Bracket notation
● Callback

function
● Calling
● CamelCase
● Change event
● classList

property
● classList.add()

● classList.remove
● Comparison

operators
● Compound

assignment
operators

● Concatenating
● Conditional

statement
● Console
● console.log()
● const keyword
● const vs. let vs.

var
● Context
● createElement()
● Data type
● Date()
● Debugging
● Decomposition
● defer attribute
● Delimiter
● disabled

property
● DOM
● DOM events
● DOM tree
● Dot notation
● Elements
● else if keyword

● else keyword
● Endpoints
● Event handler
● Event listener
● Expressions
● Factory

functions
● fetch()
● Floating point

number
● for loop
● for...of loop
● for…in loop
● forEach()
● Function
● Function body
● Function

expression
● Function scope
● getHours()
● Global scope
● if keyword
● Index
● innerHTML

property
● innerText

property
● Input event
● Integer
● Iterating

● JSON files
● json()
● Keydown event
● Keys
● Key-value pair
● let keyword
● Loop
● Loop body
● match()
● matches()
● Math.floor()
● Math.max()
● Math.min()
● Math.random()
● Method

(Lesson 4)
● Method

(Lesson 10)
● Modal window
● Modulus (%)

operator
● Mouse events
● Nested if

statement
● Null
● Number()
● Object literal
● Objects
● Parameters

● Primitive data
types

● prompt()
● Properties
● querySelector()
● querySelectorAll
● Refactored code
● Regular

expression
● Reserved

keywords
● REST APIs
● return keyword
● Scope
● Statement
● String
● style property
● Template literals
● this keyword
● toFixed()
● toLowerCase()
● toUpperCase()
● trim()
● Type conversion
● Undefined
● value property
● Values
● Variable

The ULTIMATE JavaScript Fundamentals Study Guide

2

Lesson 1 - Getting Started with JavaScript

Variable - A tool for pointing towards information. The associated value can vary or
change. Variables can be declared using the keyword var (Lesson 1) and the keywords let
and const (Lesson 9).

Values - Information stored in a variable. Specifically, a value is a sequence of bits that is
interpreted according to some data type (e.g., number, string, boolean).

Assignment operator - An operator that assigns a value to a variable. The assignment
operator uses the equal sign (=). See the Javascript Operators Cheatsheet (Lesson 3) for a
list of assignment operators.

Statement - A single instruction to the program. Often, semicolons appear at the end of
a statement to show it's complete.

var cerealTypes = 16;

console.log("We love JS!");

String - A series of characters, like numbers, letters, and symbols. Strings will have quotes
around them to group the characters and keep them in a sequence.

var vacationSpot = "beach";

var phoneNumber = "555-555-1234";

CamelCase - The standard naming convention for variables in JavaScript. The first words
are all lowercase letters, while each proceeding word begins with an uppercase letter.
Examples: bankDeposit, userInputDate, and ageLimit18

The ULTIMATE JavaScript Fundamentals Study Guide

https://learn.skillcrush.com/module-3/javascript-operators-cheatsheet/

3

Console - An environment in your browser where you can execute, or run, JavaScript. The
console lets you see the output of your code and troubleshoot errors. In CodeSandbox,
your console is located under the "Console" tab. In Google Chrome, go to More Tools >
Developer Tools > Console tab.

console.log() - A method to log out a message to the console.

console.log("Party time! Excellent!);

// Party time! Excellent!

var cats = 4;

console.log("I have" + cats + "cats.");

// I have 4 cats.

+ operator - An operator that uses the plus sign (+) to combine strings and variables.

var name = "Giorno Giovanna";

console.log("His name is" + name + ".");

// His name is Giorno Giovanna.

Concatenating - The process of joining strings together using the + operator.

var ringMetal = "gold";

console.log("She gave her a" + ringMetal + "ring.");

// She gave her a gold ring.

Back to Top ↑

Lesson 2 - Data Types & Arithmetic Operators

Template literals - Output strings using placeholders and backticks (`). Compared to
outputting strings with single or double quotes and the plus operator, template literals

The ULTIMATE JavaScript Fundamentals Study Guide

4
make it easier to output multi-line strings and combine variables with strings. In addition,
you can calculate expressions inside the string.

var jewelry = "watch";

var event = "dinner";

console.log(`They wore a ${jewelry} to ${event}.`);

// They wore a watch to dinner.

var pizzaType = "veggie";

var slicesEaten = 4;

console.log(`The ${pizzaType} pizza has ${8 - slicesEaten} slices

left.`);

// The veggie pizza has 4 slices left.

Expressions - Code that results in a value. For example, expressions can result in
numeric, string, and logical values (Lesson 3).

console.log(8 - 5);

// 3

console.log("I love" + " coding.");

// I love coding.

console.log(5<8);

// true

Integer - A whole number, like 5100 or -258. Integers can be positive or negative.

Floating point number - A number with a decimal, like 2134.3625 or -562.12. Floating
point numbers can be positive or negative.

Addition operator - An operator to add two numbers together. The addition operator

The ULTIMATE JavaScript Fundamentals Study Guide

5
uses the plus sign (+).

var applesBananas = 5 + 8;

console.log(applesBananas);

// 13

var floor1 = 10;

var floor2 = 15;

console.log(`There are ${floor1 + floor2} tables in the restaurant.`);

// There are 25 tables in the restaurant.

Arithmetic operators - Symbols for math operations, like the addition (+), subtraction
(-), multiplication (*), and division (/) operators. See the JavaScript Operators Cheatsheet
(Lesson 3) for a complete list of arithmetic operators.

Data type - The type of value a variable points to. Examples include numbers, strings,
booleans (Lesson 3), undefined, null, arrays (Lesson 8), and objects (Lesson 10).

Primitive data types - Values with only a single value, like numbers, strings, booleans
(Lesson 3), undefined, and null.

Undefined - A variable with no value assigned to it.

var happiness;

console.log(happiness);

// undefined

Null - A data type that represents an intentionally empty, or non-existent, value.

var ideas = null;

The ULTIMATE JavaScript Fundamentals Study Guide

https://learn.skillcrush.com/module-3/javascript-operators-cheatsheet/

6

console.log(ideas);

// null

Type conversion - Changing one value to a different value to complete an operator.
Type conversion is beneficial for changing strings into numbers so you can calculate them.

Number() - Convert a string into a number. Number() is useful when gathering input from
a user and then changing it to a number so that you can calculate a value.

var tvShows = Number("23");

var movies = 12;

console.log(tvShows + movies);

// 35

prompt() - Displays a field to gather information from the user. Users will see a pop-up
dialog box on their screen asking for input.

var favoriteGenre = prompt("What's your favorite music genre?");

console.log(favoriteGenre);

var oldFunds = 1500;

var newFunds = Number(prompt("How much funds were raised?"));

console.log(

`The fundraiser total is now $${oldFunds + newFunds}!.`

);

toFixed() - Convert a number data type into a string and then round to a specified
number of decimal places. Add a number inside toFixed() to specify the number of decimal
places to round to.

var taxAmount = 7.23335651;

console.log(taxAmount.toFixed(2));

// 7.23

The ULTIMATE JavaScript Fundamentals Study Guide

7

var tempFahrenheit = 98.6785;

console.log(`Her temperature is ${tempFahrenheit.toFixed(1)}.`);

// Her temperature is 98.7.

var people = 27;

var payout = 800.29;

console.log(`You won $${(payout / people).toFixed(2)}.`);

// You won $29.64.

Back to Top ↑

Lesson 3 - Comparisons & Conditionals

Conditional statement - Code that will only run if a condition is true.

Boolean - Represent just two values: true or false.

Boolean data type - A primitive data type with true or false values.

var lightsOn = true;

var fanOn = false;

console.log(lightsOn);

//true

Comparison operators - Operators that use symbols to compare two or more values,
like >, <, and ===. See the JavaScript Operators Cheatsheet (Lesson 3) for a complete list of
comparison operators.

if keyword - Keyword to use in a statement to test a condition. If the condition evaluates
to true, then the program runs the code inside the if block. You won't include a semicolon

The ULTIMATE JavaScript Fundamentals Study Guide

https://learn.skillcrush.com/module-3/javascript-operators-cheatsheet/

8
after the condition.

var hotWeather = true;

if (hotWeather === true) {

console.log("Wear shorts and a tank top today!");

}

// Wear shorts and a tank top today!

else keyword - Keyword to use in a statement to perform another action if the previous
condition evaluates to false.

var hotWeather = false;

if (hotWeather === true) {

console.log("Wear shorts and a tank top today!");

} else {

console.log("Grab a sweater, it might be chilly.");

}

// Grab a sweater, it might be chilly.

else if keyword - Keyword to use in a statement to test a new condition, and then
perform an action if the previous condition evaluates to false. As soon as a condition
evaluates to true, the code block that the condition is associated with runs and the
conditional block is exited, regardless if there are subsequent conditions that would also
evaluate to true.

var hotWeather = false;

var snowyWeather = true;

var windyWeather = true;

if (hotWeather === true) {

console.log("Wear shorts and a tank top today!");

} else if (snowyWeather === true) {

console.log("Put on a heavy jacket and boots!");

} else if (windyWeather === true) {

The ULTIMATE JavaScript Fundamentals Study Guide

9

console.log("Time to slip on your windbreaker.");

} else {

console.log("Grab a sweater, it might be chilly.");

}

// Put on a heavy jacket and boots!

alert() - Displays a pop-up message for users to see. The prompt includes an OK button
for users to click and close the pop-up.

alert("Hello, welcome to my site!");

Date() - A method to retrieve the current date.

var weekday = new Date().toLocaleString("en-US", { weekday: "long" });

getHours() - A method to retrieve the current time. The time will reflect the 24-hour
clock, AKA military time.

var time = new Date().getHours();

Back to Top ↑

Lesson 4 - JS, HTML, & CSS

defer attribute - Instructs the browser to load the script after the page has loaded. The
attribute creates a faster loading experience for the user because all the HTML renders
first, even if the JavaScript hasn't run yet. It also makes sure the HTML elements are loaded
so the JavaScript can modify them. You'll add the <script> tag and defer attributes in the
head section of the HTML page.

<!DOCTYPE html>

The ULTIMATE JavaScript Fundamentals Study Guide

10

<html>

<head>

<script src="js/script.js" defer></script>

</head>

DOM - Short for Document Object Model, the DOM represents the structure and content
of a web page. The document is the web page. The objects include HTML elements, text,
and attributes.

DOM tree - A graphical representation of the DOM which shows relationships between
objects. The DOM tree is useful for determining how to access different objects on the
document.

Methods - JavaScript actions performed on objects. Examples of methods include
console.log(), prompt(), alert(), , and querySelector(). Methods are also a type of object
property (Lesson 10).

querySelector() - A method to access the first element that matches a specified selector.
To select multiple items, you'll need to use an array (Lesson 8) with querySelectorAll()
(Lesson 9).

var available = document.querySelector("h3");

var mainTitle = document.querySelector(".main-title");

var firstItem = document.querySelector("ul li");

var intro = document.querySelector(".intro p");

console.log(available, mainTitle, firstItem, intro);

// <h3>We're here for you every day of the week.</h3>

// <h1 class="main-title">Ryan's Roses</h1>

// Today's Specials

// <p>Available today</p>

var firstImg = document.querySelector("img");

firstImg.src = "img/lulu.jpeg";

The ULTIMATE JavaScript Fundamentals Study Guide

11

firstImg.alt = "Lulu bouquet";

console.log(firstImg);
//

style property - A property that allows you to change the style of an element. If the
property name is two words, like background-color, change it to one word using camelCase
(backgroundColor).

var intro = document.querySelector(".intro p");

intro.style.color = "purple";

intro.style.fontSize = "3em";

intro.style.fontStyle = "italic";

console.log(intro);

// <p style="color: purple; font-size: 3em; font-style:

italic;">Available today</p>

innerText property - A property that accesses the text within an element. This property
is useful when you want to change or retrieve the text inside an element.

var firstCaption = document.querySelector("figcaption");

firstCaption.innerText = "The Lulu.";

console.log(firstCaption);

// <figcaption>The Lulu.</figcaption>

innerHTML property - A property that changes the HTML of an element on the page.
This property is useful for updating or adding elements to a page.

firstCaption.innerHTML = "The Lulu";

console.log(firstCaption);

//<figcaption>TheLulu</figcaption>

The ULTIMATE JavaScript Fundamentals Study Guide

12

var intro = document.querySelector(".intro p");

intro.innerHTML = 'Available <span

class="increase__size">today';

console.log(intro);

// <p>Availabletoday</p>

Debugging - Identifying and removing errors in your code.

Back to Top ↑

Lesson 5 - Events & Event Listeners

DOM events - Actions that happen in the document (web page). Events can be triggered
by the browser or by the user. In this class, you'll use mouse, change, keydown, and input
events. See Mozilla's Event Reference page for a complete list of events.

Mouse events - An event that happens when a pointing device, like a mouse, joysticks,
keyboard, or adaptive switch interacts with the document. Common mouse events are
"click", "mouseover", and "select".

Event listener - A method that "listens" for events to happen and then takes action. Use
the method addEventListener() to listen for events in the DOM.

var title = document.querySelector("h1");

title.addEventListener("mouseover");

Event handler - A function that runs code when an event occurs.

var title = document.querySelector("h1");

The ULTIMATE JavaScript Fundamentals Study Guide

https://developer.mozilla.org/en-US/docs/Web/Events

13

title.addEventListener("mouseover", function () {

title.innerText = "Let's PARTY!";

title.style.color = "maroon";

});

Function - A block of code that can be called or invoked to run as many times as needed
without repeating code. Functions are vital to writing streamlined JavaScript. Lesson 6
contains a full dive into functions.

Function body - The part of the function that contains the statements that specify what
the function does. Curly braces surround the function body.

classList property - A property to add, remove, or toggle CSS classes on an element.
This property let's you apply (or remove) multiple styles at once. You can use the classList
property with the add() and remove() methods: classList.add() and
classList.remove().

classlist.add() - A method to add a new class.

var darkModeButton = document.querySelector(".dark-mode");

var body = document.querySelector("body");

darkModeButton.addEventListener("click", function () {

body.classList.add("dark-palette");

});

classlist.remove() - A method to remove a new class.

var lightModeButton = document.querySelector(".light-mode");

lightModeButton.addEventListener("click", function () {

The ULTIMATE JavaScript Fundamentals Study Guide

14

body.classList.remove("dark-palette");

});

Modal window - A web page element that overlays a box in front of a web page. A
modal is also called a lightbox.

Back to Top ↑

Lesson 6 - Functions

Function expression - A syntax for writing functions that begins with a variable name
and then uses the function keyword to define the function.

var welcome = function () {

console.log();

};

Reserved keywords - A word that can't be used as a variable name in JavaScript. See a

complete list of reserved keywords.

Parameters - Placeholders for values you want to pass to the function. If there's more
than one parameter, separate the parameters with a comma.

var welcome = function (name) {

console.log(`Welcome, ${name}. Have a great day!`);

}

Calling - An action which will cause a function to run. If the function expects arguments,
you must provide them in the function call.

var welcome = function (name) {

The ULTIMATE JavaScript Fundamentals Study Guide

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#keywords

15

console.log(`Welcome, ${name}. Have a great day!`);

}

welcome("Sadie");

// Sadie

Arguments - Values passed to the function when it's called. If there's more than one
argument, separate the arguments with a comma.

var addTogether = function (num1, num2) {

console.log(num1 + num2);

};

addTogether(13, 72); // 85

addTogether(36, -2.88); // 33.12

return keyword - A keyword to return the value of a function and end its execution. Use
the return keyword to make the result of a function available to other parts of your code.
Unlike console.log() which only outputs a message to the console, the return keyword
allows a value to be used by other parts of the code, including console.log().

var addTogether = function (num1, num2) {

return num1 + num2;

};

alert(addTogether(36, -2.88));

console.log(addTogether(13, 72)); // 85

var lunchForTwo = addTogether(24.56, 18.99);

console.log(lunchForTwo); // 43.55

Lesson 7 - Keydown & Change Events

The ULTIMATE JavaScript Fundamentals Study Guide

16
Callback function - A function that's passed to another function as an argument. For
example, an event handler is a callback function.

button.addEventListener("click", function () {

cat.classList.add("show");

});

Keydown event - An event that occurs when a key is pressed on a keyboard, like a
letter, number, or Enter key. Inside the callback function for a keydown event, you'll pass a
parameter that will hold the event object. Most coders use e as the parameter to represent
"event."

var body = document.querySelector("body");

document.addEventListener("keydown", function (e) {

// console.log(e);

if (e.key === "l") {

body.classList.add("light");

}

});

Nested if statement - An if statement testing the condition of another if, else if, or else
statement.

In this example, the second if statement (if (body.classList.contains("light"))) is
the nested if statement.

var body = document.querySelector("body");

document.addEventListener("keydown", function (e) {

// console.log(e);
if (e.key === "l") {

body.classList.add("light");

} else if (e.key === "d") {

if (body.classList.contains("light")) {

body.classList.remove("light");

}

}

The ULTIMATE JavaScript Fundamentals Study Guide

17

});

Change event - An event that occurs when the user changes a drop-down list (i.e., the
<select> element) or input areas like the <input> or <textarea> elements. Inside the
callback function for a change event, you'll pass a parameter that will represent the change
event. Most coders use e as the parameter to represent "event."

var fave = document.querySelector("#favorite");

var heading = document.querySelector("h1");

var selection = "regular";

fave.addEventListener("change", function (e) {

selection = e.target.value;

if (selection === "stealth") {

heading.innerText = "Stealth Quincy 😎";

} else if (selection === "party") {

heading.innerText = "Party Quincy 🥳";

} else {

heading.innerText = "Quincy";

}

});

toUpperCase() - A method for converting a string value into all uppercase letters.

var louder = "Speak up, please!"

console.log(louder.toUpperCase());

// SPEAK UP, PLEASE!

Math.floor() - A method for rounding a number down to the next whole number.

var seatingCapacity = 1256.3;

console.log(Math.floor(seatingCapacity));

//1256

Math.random() - A method for producing a random number between 0 and 1. Multiply it
by another number to output a larger random number. Pair it with Math.floor() to round

The ULTIMATE JavaScript Fundamentals Study Guide

18
the number to the nearest whole number.

console.log(Math.random());

// 0.15884857919099582

console.log(Math.random() * 36);

// 18.873096475917126

console.log(Math.floor(Math.random() * 12));

// 10

Back to Top ↑

Lesson 8 - Arrays & Loops

Arrays - A data type that contains one or more values. You'll add square brackets around
the array values (elements). See the Javascript Arrays Cheatsheet (Lesson 8) for a list of
array methods.

var timeOfDay = [6, "noon", 8, "morning", "evening", 12];

You can also create an empty array to add items.

var medicine = [];

Elements - The values stored in an array. Elements can be strings, numbers, and floating
point numbers data types.

var ages = ["thirty", 16, 48, "fifty-five", 1.5];

Index - The position of an element in an array. In JavaScript, the first element starts at
index 0. The second element would start at index 1, and so on.

The ULTIMATE JavaScript Fundamentals Study Guide

https://learn.skillcrush.com/module-7/javascript-arrays-cheatsheet/

19

Elements ["thirty", 16, 48, "fifty-five", 1.5];

↑ ↑ ↑ ↑ ↑

Index 0 1 2 3 4

Loop - A statement that allows you to repeat code multiple times.

Iterating - Each time a loop runs through a block of code. Each pass of the loop is called
an iteration.

for loop - A type of loop that iterates through a block of code a designated number of
times. Examples of for loops include the for...of loop (Lesson 8) and the for...in loop (Lesson
11).

for...of loop - A type of for loop that iterates over the values of an array. A for...of loop
only has access to the values of an array, not the index. You can use the for...of loop with
the for...in loop (Lesson 11) to loop through multiple object properties.

var timeOfDay = [6, "noon", 8, "morning", "evening", 12];

for (var time of timeOfDay) {

console.log(`It is ${time}.`);

}

// It is 6.

// It is noon.

// It is 8.

// It is morning.

// It is evening.

// It is 12.

Loop body - The loop section where you'll write the statements you want to execute on
each loop iteration.

The ULTIMATE JavaScript Fundamentals Study Guide

20
forEach() - A method to iterate through elements in an array and then execute a function
for each array item. Unlike for...of loops, forEach() lets you access the array elements'
value and index.

var timeOfDay = [6, "noon", 8, "morning", "evening", 12];

timeOfDay.forEach(function (time, index) {

console.log(`The ${time} element is at position ${index}.`);

});

// The 6 element is at position 0.

// The noon element is at position 1.

// The 8 element is at position 2.

// The morning element is at position 3.

// The evening element is at position 4.

// The 12 element is at position 5.

Modulus operator - An operator to return the remainder of two numbers divided. The
modulus operator uses the percent sign (%). The modulus operator is also called the
"modulo" operator.

var candy = 14;

var kids = 4;

console.log(`There are ${candy % kids} pieces of candy remaining.`);

// There are 2 pieces of candy remaining.

var num = 45;

if (num % 2 === 0) {

console.log("This is an even number.");

} else {

console.log("This is an odd number.");

};

// This is an odd number.

Back to Top ↑

The ULTIMATE JavaScript Fundamentals Study Guide

21

Lesson 9 - Scope

Scope - The context where variables are visible to certain parts of your program. Scope
can be divided into global scope, function scope, and block scope.

Context - The place the code is evaluated and executed, like inside a function or loop.

Global scope - The context for the whole program. Globally scoped variables are
available to any part of the program.

Function scope - The context inside a function. Variables defined within a function are
scoped only to that function or nested functions.

Block scope - The context inside a block of code. Unlike declaring variables with var,
declaring your variables with let and const keeps variables in block scope.

let keyword - A keyword to declare variables and prevent them from being accessed
outside the block they were declared in. Use let inside code blocks (e.g., loops, if/else if
statements) and when you want to reassign the value of a variable.

if (numOfDrinks === 5) {

let soda = "lemon-lime";

console.log(soda);

}

// lemon-lime

console.log(soda);

// ReferenceError: soda is not defined

const keyword - A keyword to declare variables to constrain a variable to block scope
and prevent the value from being reassigned. Using const will prevent data types like

The ULTIMATE JavaScript Fundamentals Study Guide

22
strings, booleans, and numbers from being reassigned to a different value. For data types
like arrays and objects, const will prevent reassigning the variable but still allow you to
modify the elements inside the array/object.

const numOfDrinks = 5;

const drinks = function () {

const tea = 6 + numOfDrinks;

console.log(tea);

};

drinks();

// 11

If you try to reassign a variable declared with const, you'll receive an error in the console
like “TypeError: Assignment to constant variable” or "<variable name> is read-only" when
attempting to reassign a variable.

const numOfDrinks = 5;

numOfDrinks = 7;

console.log(numOfDrinks);

// SyntaxError: /script.js: "numOfDrinks" is read-only

const vs. let vs. var - For most uses, you'll want to use const to declare your variables,
except when you need to reassign variables (let) or you're working with legacy code (var).

const let var

Function scoped Yes Yes Yes

Block scoped Yes Yes No

Reassignable No Yes Yes

Redeclareable No No Yes

Summary Use const as the
default way to
declare variables.

Declare variables
with let when you
need to reassign the

Use var when
working with legacy
code that already

The ULTIMATE JavaScript Fundamentals Study Guide

23

You'll use const 95%
of the time.

value of your
variables, like in a
loop or if/else if
statement.

uses var. Declaring
with var is also
helpful when
learning to write
code and scope
issues aren't a
factor.

value property - A property to capture the content entered into a text box.

createElement() - A method to create a new HTML element.

append() - A method to add elements at the end of another DOM element, like a list.

querySelectorAll() - A method to select all the elements that match a specific selector.
The querySelectorAll() returns a list of elements in an array-like structure..

addShowButton.addEventListener("click", function () {

const show = showInput.value;

if (show !== "") {

let listItem = document.createElement("li");

listItem.innerText = show;

showList.append(listItem);

let shows = document.querySelectorAll(".show-list li");

showCount.innerText = shows.length;

}

});

length property - A property to identify the number of elements in an array.

var daysOfWeek = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

console.log(daysOfWeek.length);

// 5

The ULTIMATE JavaScript Fundamentals Study Guide

24
Refactored code - Code that was restructured without changing or adding to its
functionality, usually with the goal to make it more readable, better performing, or both.

disabled property - A property to indicate if an element can be interacted with or not.
The disabled property uses the boolean values of true and false. For example, if the
disabled property is set to true for a button, the user can no longer click the button.

assignButton.addEventListener("click", function () {

assignItems();

assignButton.disabled = true;

});

Math.min() - A method that finds the smallest value passed to it. Use the spread (...)
operator to send individual array elements to Math.min() instead of the whole array.

console.log(Math.min(2, -12, 71));

// 12

const employees = [12, 68, 333, 56, 1250];

const smallestNum = Math.min(...employees);

console.log(smallestNum);

// 12

Math.max() - A method that finds the largest value in an array. Use the spread (...)
operator to send individual array elements to Math.max() instead of the whole array.

console.log(Math.max(2, -12, 71));

// 71

const employees = [12, 68, 333, 56, 1250];

const largestNum = Math.max(...employees);

console.log(largestNum);

// 1280

The ULTIMATE JavaScript Fundamentals Study Guide

25

Back to Top ↑

Lesson 10 - Objects & Methods

Objects - A data type used to group multiple properties and their corresponding values
into a single, unordered entity. Like an object in real life, a JavaScript object represents a
thing with characteristics (properties), like a person, animal, instrument, or house. An
object is a collection of key-value pairs.

Properties - Different values of an object. A property represents the different
characteristics of your object. Properties can be any data type, like a number, string, array,
boolean, or function.

Dot notation - A syntax to assign or access the property of an object using a period
between the object name and property.

const cat = {};

cat.name = "Fred";

cat.nickname = "Flooficus";

cat.age = 5;

cat.isSleeping = true;

cat.favoriteToys = ["spring", "ping pong balls", "bird stuffy"]

cat.pet = function () {

return "purrrrrrrr";

}

Method (object property) - A function that's a property in an object. Use the return

keyword to return the value of the method and make the result available to other parts of
your code.

Methods can be added to an object following its creation:

The ULTIMATE JavaScript Fundamentals Study Guide

26

const cat = {};

cat.pet = function () {

return "purrrrrrrr";

}

Methods can also be created inside an object literal:

const cat = {

pet: function () {

return "purrrrrrrr";

}

};

Keys - An object's unique elements which are used to access its values. Keys are also
known as "identifiers" or "names." An object's keys must be unique and cannot be
duplicated in the same object.

Key-value pair - An object's property consisting of a key and its associated value.

Dot Notation Bracket Notation

key-value pair key-value pair

house.color = "blue" house["color"] = "blue"

↑ ↑ ↑ ↑ ↑ ↑

object key value object key value

Object Literal Factory Function (w/parameter)

const house = { ← object const createHouse = function (color) {

color: "blue" ← key-value pair const house = { ← object

}; color: color ← key-value pair
};

The ULTIMATE JavaScript Fundamentals Study Guide

27
return house;

};

Bracket notation - A syntax to access or assign the property of an object using square
brackets around the between property. Add quotation marks around the property name
inside the square brackets.

const cat = {

name: "Fred",

nickname: "Flooficus",

age: 5,

isSleeping: true,

favoriteToys: ["spring", "ping pong balls", "bird stuffy"],

pet: function () {

return "purrrrrrrr";

}

};

cat["color"] = "orange";

console.log(cat["isSleeping"]);

// true

Object literal - A collection of key-value pairs inside the object’s curly braces, separated
by a comma. The key and value are separated by a colon (:). You can add or change existing
properties of an object literal by using either dot or bracket notation and the = assignment
operator.

const cat = {

name: "Fred",

nickname: "Flooficus",

age: 5,

isSleeping: true,

favoriteToys: ["spring", "ping pong balls", "bird stuffy"],

pet: function () {

return "purrrrrrrr";

}

};

The ULTIMATE JavaScript Fundamentals Study Guide

28

cat.isSleeping = false;

cat["color"] = "orange";

console.log(cat);

// {name: "Fred", nickname: "Flooficus", age: 5, isSleeping: false,

favoriteToys: Array(3)...}

this keyword - In a method, the this keyword allows you to reference another property
from the same object.

An example of the this keyword used with a method that's outside the object declaration:

const house = {

windows: 20

};

house.windowWash = function () {

if (this.windows > 15) {

return `That's a lot of windows to wash!`;

}

};

console.log(house.windowWash());

//That's a lot of windows to wash!

Here's an example of this keyword used with a method that's declared in an object literal:

const house = {

windows: 20,

windowWash: function () {

if (this.windows > 15);

return `That's a lot of windows to wash!`;

}

};

console.log(house.windowWash());

//That's a lot of windows to wash!

Compound assignment operators - An assignment operator that combines the

The ULTIMATE JavaScript Fundamentals Study Guide

29
assignment operator (=) with an arithmetic operator (+, -, *, /, and %). Compound
assignment operators provide a shorter, cleaner syntax for performing calculations. See
the JavaScript Operators Cheatsheet (Lesson 3) for a full list of assignment operators.

let paperclips = 10;

paperclips += 2;

console.log(paperclips);

// 12

let candy = 15;

candy %= 6;

console.log(`There's ${candy} candies leftover.`);

// There's 3 candies leftover.

Back to Top ↑

Lesson 11 - Factory Functions

Factory functions - Patterns to create multiple objects. Factory functions let you quickly
build several objects that share the same characteristics, AKA properties. You must return
your object at the bottom of your factory function. You'll use factory functions when you
want to create and manage multiple objects that have the same characteristics (e.g., color)
that are expressed differently (e.g., blue, green, yellow).

const createContact = function () {

const contact = {

name: "Noelle Silva",

phoneNum: "555-555-1234",

isNew: true,

message: function () {

this.isNew = true;

console.log("You've added a new contact!");

}

};

return contact;

};

The ULTIMATE JavaScript Fundamentals Study Guide

https://learn.skillcrush.com/module-3/javascript-operators-cheatsheet/

30

console.log(createContact());

// {name: "Noelle Silva", phoneNum: "555-555-1234", isNew: true, message: ƒ
message()}

You can provide parameters to your factory function in order to make your object more
flexible and easy to reuse:

const createContact = function (name, phone) {

const contact = {

name: name,

phoneNum: phone,

isNew: true,

message: function () {

this.isNew = true;

console.log("You've added a new contact!");

}

};

return contact;

};

const contact1 = createContact("Noelle Silva", "555-555-1234");

const contact2 = createContact("Yami Sukehiro", "555-321-5555");

console.log(contact1, contact2);

// {name: "Noelle Silva", phoneNum: "555-555-1234", isNew: true, message: ƒ
message()}

// {name: "Yami Sukehiro", phoneNum: "555-321-5555", isNew: true, message:

ƒ message()}

for...in loop - A type of for loop that will allow you to loop over an object's key-value
pairs. When looping over objects, you may want to access just the keys, just the values, or
both the keys and the values.

const createContact = function (name, phone) {

const contact = {

name: name,

phoneNum: phone,

isNew: true,

message: function () {

The ULTIMATE JavaScript Fundamentals Study Guide

31

this.isNew = true;

console.log("You've added a new contact!");

}

};

return contact;

};

const contact1 = createContact("Noelle Silva", "555-555-1234");

for (let key in contact1) {

console.log(key, contact1[key]);

}

// name Noelle Silva

// phoneNum 555-555-1234

// isNew true

// message f message() {}

To loop through multiple objects, add the objects to an array and then loop through the
array using the for...of loop (Lesson 8). After the for...of loop, nest the for...in loop to
access the object's key, value, or keys and values.

const contact1 = createContact("Noelle Silva", "555-555-1234");

const contact2 = createContact("Yami Sukehiro", "555-321-5555");

const contactsArray = [contact1, contact2];

for (let contact of contactsArray) {

for (let key in contact) {

console.log(key, contact[key]);

}

}

// name Noelle Silva

// phoneNum 555-555-1234

// isNew true

// message f message() {}

// name Yami Sukehiro

// phoneNum 555-321-5555

// isNew true

// message f message() {}

Back to Top ↑

The ULTIMATE JavaScript Fundamentals Study Guide

32

Lesson 12 - Intro to APIs

API - An Application Programming Interface (API) is a way to allow information from an
internal or external source to interact with your program.

API URL - The address to get access to the API. The API developers determine the API URL
and associated endpoints and parameters, which can be found in the API's documentation.
To access specific data from the API, you'll need the API URL combined with endpoints and
possibly parameters.

Example API URLs:
● https://quote-garden.herokuapp.com/api/v3/
● https://api.tvmaze.com/

JSON files - A type of text file used for exchanging data. Most programming languages
can interpret JSON files. JSON stands for JavaScript Object Notation. JSON files end with a
.json file extension. Install an extension on your browser, JSON Formatter, to reformat JSON
data and make it easier to read.

REST APIs - A type of API for making use of HTTP requests. You'll use the REST API's
documentation to discover the API URL, endpoints, and parameters.

Endpoints - The "end" of the API URL that determines the type of information available.

● Example API endpoint for all quotes:
https://quote-garden.herokuapp.com/api/v3/quotes

● Example API endpoint for a subset of quotes:
https://quote-garden.herokuapp.com/api/v3/quotes/random

API parameters - Placeholders for data in the API URL. You'll add a question mark (?)
between the endpoint and the parameters. If the parameter has more than one word,

The ULTIMATE JavaScript Fundamentals Study Guide

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
https://quote-garden.herokuapp.com/api/v3/quotes
https://quote-garden.herokuapp.com/api/v3/quotes/random

33
replace the space between the words with the "%20" character. To chain more than one
parameter together, add the ampersand (&) sign between the parameters.

Example API URL with a single parameter:
https://quote-garden.herokuapp.com/api/v3/quotes?author=maya%20angelou

Example API URL with multiple parameters (separated by a "&" sign):
https://quote-garden.herokuapp.com/api/v3/quotes?author=maya%20angelou&limit=1

fetch() - A method to allow you to get resources over a network, like data from an API.

async keyword - A keyword to enable asynchronous communication between your
program and the API.

await keyword - A keyword that tells the program to wait on that line in the function
until the API data are received.

json() - A method to parse (interpret) the JSON data from the API call and transform it into
a JavaScript object.

const getData = async function () {

const res = await fetch(

"https://quote-garden.herokuapp.com/api/v3/quotes?author=beyonce"

);

const data = await res.json();

console.log(data);

};

getData();

const getShows = async function () {

const showRequest = await fetch("https://api.tvmaze.com/schedule/web");

const data = await showRequest.json();

console.log(data);

};

getShows()

The ULTIMATE JavaScript Fundamentals Study Guide

https://quote-garden.herokuapp.com/api/v3/quotes?author=maya%20angelou
https://quote-garden.herokuapp.com/api/v3/quotes?author=maya%20angelou&limit=1

34

// {61) [Object, Object, Object, Object, Object, Object, Object, Object,

Object, Object, ...]

Back to Top ↑

Lesson 13 - Project: Guess the Word Game

Decomposition - A computer science term that means breaking down a larger problem
into smaller problems. Decomposition makes tackling a large project easier by breaking it
into smaller problems that need to be solved.

Regular expression - A sequence of characters that lets you find text that matches a
specific pattern. You'll use a regular expression when searching or replacing text. Regular
expressions are also called "regex" or "regexp" for short. To learn more about regular
expressions, check out this JavaScript Regex article.

match() - A method used with a regular expression to search the strings and match them
to the regular expression.

const str = 'CanyoufindthesecretchocolatesnackIhaveinthislongstring';

const snackMatch = str.match(/chocolate/);

if (snackMatch) {

console.log("Found the chocolate!")

};

// Found the chocolate!

Delimiter - A character to separate words in a string.

\n - A delimiter to create a line break (AKA newline).

The ULTIMATE JavaScript Fundamentals Study Guide

https://www.programiz.com/javascript/regex

35

console.log("First,\nsecond,\nand third!");

// First

// second,

// and third!

trim() - A method to remove extra whitespace before and after a string.

var happiness = " Happiness is bug-free code. ";

console.log(happiness);

// Happiness is bug-free code.

console.log(happiness.trim());

// Happiness is bug-free code.

Back to Top ↑

Lesson 14 - Projects: GitHub Repo Gallery

matches() - A method to check if the target element (i.e., where the user clicks on the
page) matches a specific selector.

const h2 = document.querySelectorAll('h2');

for (let heading of h2){

if (heading.matches(".highlight")){

heading.style.backgroundColor = "yellow";

}

}

Input event - An event triggered when the value of the <input> element changes, like
when a user inputs text in the search box. Inside the callback function for an input event,
you'll pass a parameter that will hold the data for the text input. Most coders use e as the
parameter to represent "event."

The ULTIMATE JavaScript Fundamentals Study Guide

36

const namefield = document.querySelector("input.name");

namefield.addEventListener("input", function(e) {

console.log(e.target.value)

}

toLowerCase() - A method for converting a string value into all lowercase letters.

var quiet = "PLEASE Lower Your Voice"

console.log(quiet.toLowerCase());

// please lower your voice

Back to Top ↑

The ULTIMATE JavaScript Fundamentals Study Guide

The .length property of a JavaScript array indicates the number of elements the
array contains. const numbers = [1, 2, 3, 4];

numbers.length // 4

Array elements are arranged by index values, starting at 0 as the �rst element index.
Elements can be accessed by their index using the array name, and the index
surrounded by square brackets.

// Accessing an array element
const myArray = [100, 200, 300];

console.log(myArray[0]); // 100
console.log(myArray[1]); // 200
console.log(myArray[2]); // 300

The .push() method of JavaScript arrays can be used to add one or more elements
to the end of an array. .push() mutates the original array returns the new length of
the array.

// Adding a single element:
const cart = ['apple', 'orange'];
cart.push('pear');

// Adding multiple elements:
const numbers = [1, 2];
numbers.push(3, 4, 5);

The .pop() method removes the last element from an array and returns that element.
const ingredients = ['eggs', 'flour', 'chocolate'];

const poppedIngredient = ingredients.pop(); // 'chocolate'
console.log(ingredients); // ['eggs', 'flour']

JavaScript arrays are mutable, meaning that the values they contain can be changed.
Even if they are declared using const , the contents can be manipulated by reassigning
internal values or using methods like .push() and .pop() .

const names = ['Alice', 'Bob'];

names.push('Carl');
// ['Alice', 'Bob', 'Carl']

Arrays are lists of ordered, stored data. They can hold items that are of any data type.
Arrays are created by using square brackets, with individual elements separated by
commas.

// An array containing numbers
const numberArray = [0, 1, 2, 3];

// An array containing different data types
const mixedArray = [1, 'chicken', false];

Cheatsheets / Learn JavaScript

Arrays
Property .length

Index

Method .push()

Method .pop()

Mutable

Arrays

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

Beginner’s Essential

Javascript Cheat Sheet

The language of the web.

Table of Contents

Javascript Basics 2

Variables 2

Arrays 3

Operators 4

Functions 5

Loops 7

If - Else Statements 7

Strings 7

Regular Expressions 9

Numbers and Math 10

Dealing with Dates 12

DOM Node 14

Working with the Browser 18

Events 21

Errors 27

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 1

Javascript Basics

Including JavaScript in an HTML Page

<script type="text/javascript">

 //JS code goes here

</script>

Call an External JavaScript File

<script src="myscript.js"></script><code></code>

Including Comments

//

Single line comments

/* comment here */

Multi-line comments

Variables

var, const, let

var

The most common variable. Can be reassigned but only accessed within a function. Variables
defined with var move to the top when code is executed.

const

Cannot be reassigned and not accessible before they appear within the code.

let

Similar to const, however, let variable can be reassigned but not re-declared.

Data Types

var age = 23

Numbers

var x

Variables

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 2

var a = "init"

Text (strings)

var b = 1 + 2 + 3

Operations

var c = true

True or false statements

const PI = 3.14

Constant numbers

var name = {firstName:"John", lastName:”Doe"}

Objects

Objects

var person = {

 firstName:"John",

 lastName:"Doe",

 age:20,

 nationality:"German"

};

Arrays
var fruit = ["Banana", "Apple", "Pear"];

Array Methods

concat()

Join several arrays into one

indexOf()

Returns the first position at which a given element appears in an array

join()

Combine elements of an array into a single string and return the string

lastIndexOf()

Gives the last position at which a given element appears in an array

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 3

pop()

Removes the last element of an array

push()

Add a new element at the end

reverse()

Reverse the order of the elements in an array

shift()

Remove the first element of an array

slice()

Pulls a copy of a portion of an array into a new array of 4 24

sort()

Sorts elements alphabetically

splice()

Adds elements in a specified way and position

toString()

Converts elements to strings

unshift()

Adds a new element to the beginning

valueOf()

Returns the primitive value of the specified object

Operators

Basic Operators

+ Addition

- Subtraction

* Multiplication

/ Division

(..) Grouping operator

% Modulus (remainder)

++ Increment numbers

-- Decrement numbers

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 4

Comparison Operators

== Equal to

=== Equal value and equal type

!= Not equal

!== Not equal value or not equal type

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

? Ternary operator

Logical Operators

&& Logical and

|| Logical or

! Logical not

Bitwise Operators

& AND statement

| OR statement

~ NOT

^ XOR

<< Left shift

>> Right shift

>>> Zero fill right shift

Functions
function name(parameter1, parameter2, parameter3) {

 // what the function does

}

Outputting Data

alert()

Output data in an alert box in the browser window

confirm()

Opens up a yes/no dialog and returns true/false depending on user click

console.log()

Writes information to the browser console, good for debugging purposes

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 5

document.write()

Write directly to the HTML document

prompt()

Creates an dialogue for user input

Global Functions

decodeURI()

Decodes a Uniform Resource Identifier (URI) created by encodeURI or similar

decodeURIComponent()

Decodes a URI component

encodeURI()

Encodes a URI into UTF-8

encodeURIComponent()

Same but for URI components

eval()

Evaluates JavaScript code represented as a string

isFinite()

Determines whether a passed value is a finite number

isNaN()

Determines whether a value is NaN or not

Number()

Returns a number converted from its argument

parseFloat()

Parses an argument and returns a floating point number

parseInt()

Parses its argument and returns an integer

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 6

Loops
for (before loop; condition for loop; execute after loop) {

 // what to do during the loop

}

for

The most common way to create a loop in Javascript

while

Sets up conditions under which a loop executes

do while

Similar to the while loop, however, it executes at least once and performs a check at the end to
see if the condition is met to execute again

break

Used to stop and exit the cycle at certain conditions

continue

Skip parts of the cycle if certain conditions are met of 7 24

If - Else Statements
if (condition) {

 // what to do if condition is met

} else {

 // what to do if condition is not met

}

Strings
var person = "John Doe";

Escape Characters

\' — Single quote

\" — Double quote

\\ — Backslash

\b — Backspace

\f — Form feed

\n — New line

\r — Carriage return

\t — Horizontal tabulator

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 7

\v — Vertical tabulator

String Methods

charAt()

Returns a character at a specified position inside a string

charCodeAt()

Gives you the unicode of character at that position

concat()

Concatenates (joins) two or more strings into one

fromCharCode()

Returns a string created from the specified sequence of UTF-16 code units

indexOf()

Provides the position of the first occurrence of a specified text within a string

lastIndexOf()

Same as indexOf() but with the last occurrence, searching backwards

match()

Retrieves the matches of a string against a search pattern

replace()

Find and replace specific text in a string

search()

Executes a search for a matching text and returns its position

slice()

Extracts a section of a string and returns it as a new string

split()

Splits a string object into an array of strings at a specified position

substr()

Similar to slice() but extracts a substring depended on a specified number of characters

substring()

Also similar to slice() but can’t accept negative indices

toLowerCase()

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 8

Convert strings to lowercase

toUpperCase()

Convert strings to uppercase

valueOf()

Returns the primitive value (that has no properties or methods) of a string object

Regular Expressions

Pattern Modifiers

e — Evaluate replacement

i — Perform case-insensitive matching

g — Perform global matching

m — Perform multiple line matching

s — Treat strings as single line

x — Allow comments and whitespace in pattern

U — Non Greedy pattern

Brackets

[abc] Find any of the characters between the brackets

[^abc] Find any character not in the brackets

[0-9] Used to find any digit from 0 to 9

[A-z] Find any character from uppercase A to lowercase z

(a|b|c) Find any of the alternatives separated with |

Metacharacters

. — Find a single character, except newline or line terminator

\w — Word character

\W — Non-word character

\d — A digit

\D — A non-digit character

\s — Whitespace character

\S — Non-whitespace character

\b — Find a match at the beginning/end of a word

\B — A match not at the beginning/end of a word

\0 — NUL character

\n — A new line character

\f — Form feed character

\r — Carriage return character

\t — Tab character

\v — Vertical tab character

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 9

\xxx — The character specified by an octal number xxx

\xdd — Character specified by a hexadecimal number dd

\uxxxx — The Unicode character specified by a hexadecimal number xxxx

Quantifiers

n+ — Matches any string that contains at least one n

n* — Any string that contains zero or more occurrences of n

n? — A string that contains zero or one occurrences of n

n{X} — String that contains a sequence of X n’s

n{X,Y} — Strings that contains a sequence of X to Y n’s

n{X,} — Matches any string that contains a sequence of at least X n’s

n$ — Any string with n at the end of it

^n — String with n at the beginning of it

?=n — Any string that is followed by a specific string n

?!n — String that is not followed by a specific string n

Numbers and Math

Number Properties

MAX_VALUE

The maximum numeric value representable in JavaScript

MIN_VALUE

Smallest positive numeric value representable in JavaScript

NaN

The “Not-a-Number” value

NEGATIVE_INFINITY

The negative Infinity value

POSITIVE_INFINITY

Positive Infinity value

Number Methods

toExponential()

Returns a string with a rounded number written as exponential notation

toFixed()

Returns the string of a number with a specified number of decimals

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 10

toPrecision()

String of a number written with a specified length

toString()

Returns a number as a string

valueOf()

Returns a number as a number

Math Properties

E Euler’s number

LN2 The natural logarithm of 2

LN10 Natural logarithm of 10

LOG2E Base 2 logarithm of E

LOG10E Base 10 logarithm of E

PI The number PI

SQRT1_2 Square root of 1/2

SQRT2 The square root of 2

Math Methods

abs(x)

Returns the absolute (positive) value of x

acos(x)

The arccosine of x, in radians

asin(x)

Arcsine of x, in radians

atan(x)

The arctangent of x as a numeric value

atan2(y,x)

Arctangent of the quotient of its arguments

ceil(x)

Value of x rounded up to its nearest integer

cos(x)

The cosine of x (x is in radians)

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 11

exp(x)

Value of Ex

floor(x)

The value of x rounded down to its nearest integer

log(x)

The natural logarithm (base E) of x

max(x,y,z,...,n)

Returns the number with the highest value

min(x,y,z,...,n)

Same for the number with the lowest value

pow(x,y)

X to the power of y

random()

Returns a random number between 0 and 1

round(x)

The value of x rounded to its nearest integer

sin(x)

The sine of x (x is in radians)

sqrt(x)

Square root of x

tan(x)

The tangent of an angle

Dealing with Dates

Setting Dates

Date()

Creates a new date object with the current date and time

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 12

Date(2017, 5, 21, 3, 23, 10, 0)

Create a custom date object. The numbers represent year, month, day, hour, minutes, seconds,
milliseconds. You can omit anything you want except for year and month.

Date("2017-06-23")

Date declaration as a string

Pulling Date and Time Values

getDate()

Get the day of the month as a number (1-31)

getDay()

The weekday as a number (0-6)

getFullYear()

Year as a four digit number (yyyy)

getHours()

Get the hour (0-23)

getMilliseconds()

The millisecond (0-999)

getMinutes()

Get the minute (0-59)

getMonth()

Month as a number (0-11)

getSeconds()

Get the second (0-59)

getTime()

Get the milliseconds since January 1, 1970

getUTCDate()

The day (date) of the month in the specified date according to universal time (also available for
day, month, fullyear, hours, minutes etc.)

parse

Parses a string representation of a date, and returns the number of milliseconds since January
1, 1970

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 13

Set Part of a Date

setDate()

Set the day as a number (1-31)

setFullYear()

Sets the year (optionally month and day)

setHours()

Set the hour (0-23)

setMilliseconds()

Set milliseconds (0-999)

setMinutes()

Sets the minutes (0-59)

setMonth()

Set the month (0-11)

setSeconds()

Sets the seconds (0-59)

setTime()

Set the time (milliseconds since January 1, 1970)

setUTCDate()

Sets the day of the month for a specified date according to universal time (also available for
day, month, fullyear, hours, minutes etc.)

DOM Node

Node Properties

attributes

Returns a live collection of all attributes registered to and element

baseURI

Provides the absolute base URL of an HTML element

childNodes

Gives a collection of an element’s child nodes

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 14

firstChild

Returns the first child node of an element

lastChild

The last child node of an element

nextSibling

Gives you the next node at the same node tree level

nodeName

Returns the name of a node

nodeType

Returns the type of a node

nodeValue

Sets or returns the value of a node

ownerDocument

The top-level document object for this node

parentNode

Returns the parent node of an element

previousSibling

Returns the node immediately preceding the current one

textContent

Sets or returns the textual content of a node and its descendants

Node Methods

appendChild()

Adds a new child node to an element as the last child node

cloneNode()

Clones an HTML element

compareDocumentPosition()

Compares the document position of two elements

getFeature()

Returns an object which implements the APIs of a specified feature

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 15

hasAttributes()

Returns true if an element has any attributes, otherwise false

hasChildNodes()

Returns true if an element has any child nodes, otherwise false

insertBefore()

Inserts a new child node before a specified, existing child node

isDefaultNamespace()

Returns true if a specified namespaceURI is the default, otherwise false

isEqualNode()

Checks if two elements are equal

isSameNode()

Checks if two elements are the same node

isSupported()

Returns true if a specified feature is supported on the element

lookupNamespaceURI()

Returns the namespaceURI associated with a given node

lookupPrefix()

Returns a DOMString containing the prefix for a given namespaceURI, if present

normalize()

Joins adjacent text nodes and removes empty text nodes in an element

removeChild()

Removes a child node from an element

replaceChild()

Replaces a child node in an element

Element Methods

getAttribute()

Returns the specified attribute value of an element node

getAttributeNS()

Returns string value of the attribute with the specified namespace and name

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 16

getAttributeNode()

Gets the specified attribute node

getAttributeNodeNS()

Returns the attribute node for the attribute with the given namespace and name

getElementsByTagName()

Provides a collection of all child elements with the specified tag name

getElementsByTagNameNS()

Returns a live HTMLCollection of elements with a certain tag name belonging to the given
namespace

hasAttribute()

Returns true if an element has any attributes, otherwise false

hasAttributeNS()

Provides a true/false value indicating whether the current element in a given namespace has the
specified attribute

removeAttribute()

Removes a specified attribute from an element

removeAttributeNS()

Removes the specified attribute from an element within a certain namespace

removeAttributeNode()

Takes away a specified attribute node and returns the removed node

setAttribute()

Sets or changes the specified attribute to a specified value

setAttributeNS()

Adds a new attribute or changes the value of an attribute with the given namespace and name

setAttributeNode()

Sets or changes the specified attribute node

setAttributeNodeNS()

Adds a new namespaced attribute node to an element

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 17

Working with the Browser

Window Properties

closed

Checks whether a window has been closed or not and returns true or false

defaultStatus

Sets or returns the default text in the statusbar of a window

document

Returns the document object for the window

frames

Returns all <iframe> elements in the current window

history

Provides the History object for the window

innerHeight

The inner height of a window’s content area

innerWidth

The inner width of the content area

length

Find out the number of <iframe> elements in the window

location

Returns the location object for the window

name

Sets or returns the name of a window

navigator

Returns the Navigator object for the window

opener

Returns a reference to the window that created the window

outerHeight

The outer height of a window, including toolbars/ scrollbars

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 18

outerWidth

The outer width of a window, including toolbars/ scrollbars

pageXOffset

Number of pixels the current document has been scrolled horizontally

pageYOffset

Number of pixels the document has been scrolled vertically

parent

The parent window of the current window

screen

Returns the Screen object for the window

screenLeft

The horizontal coordinate of the window (relative to screen)

screenTop

The vertical coordinate of the window

screenX

Same as screenLeft but needed for some browsers

screenY

Same as screenTop but needed for some browsers

self

Returns the current window

status

Sets or returns the text in the statusbar of a window

top

Returns the topmost browser window

Window Methods

alert()

Displays an alert box with a message and an OK button

blur()

Removes focus from the current window

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 19

clearInterval()

Clears a timer set with setInterval()

clearTimeout()

Clears a timer set with setTimeout()

close()

Closes the current window

confirm()

Displays a dialogue box with a message and an OK and Cancel button

focus()

Sets focus to the current window

moveBy()

Moves a window relative to its current position

moveTo()

Moves a window to a specified position

open()

Opens a new browser window

print()

Prints the content of the current window

prompt()

Displays a dialogue box that prompts the visitor for input

resizeBy()

Resizes the window by the specified number of pixels

resizeTo()

Resizes the window to a specified width and height

scrollBy()

Scrolls the document by a specified number of pixels

scrollTo()

Scrolls the document to specific coordinates

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 20

setInterval()

Calls a function or evaluates an expression at specified intervals

setTimeout()

Calls a function or evaluates an expression after a specified interval

stop()

Stops the window from loading

Screen Properties

availHeight

Returns the height of the screen (excluding the Windows Taskbar)

availWidth

Returns the width of the screen (excluding the Windows Taskbar)

colorDepth

Returns the bit depth of the color palette for displaying images

height

The total height of the screen

pixelDepth

The color resolution of the screen in bits per pixel

width

The total width of the screen

Events

Mouse

onclick

The event occurs when the user clicks on an element

oncontextmenu

User right-clicks on an element to open a context menu

ondblclick

The user double-clicks on an element

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 21

onmousedown

User presses a mouse button over an element

onmouseenter

The pointer moves onto an element

onmouseleave

Pointer moves out of an element

onmousemove

The pointer is moving while it is over an element

onmouseover

When the pointer is moved onto an element or one of its children

onmouseout

User moves the mouse pointer out of an element or one of its children

onmouseup

The user releases a mouse button while over an element

Keyboard

onkeydown

When the user is pressing a key down

onkeypress

The moment the user starts pressing a key

onkeyup

The user releases a key

Frame

onabort

The loading of a media is aborted

onbeforeunload

Event occurs before the document is about to be unloaded

onerror

An error occurs while loading an external file

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 22

onhashchange

There have been changes to the anchor part of a URL

onload

When an object has loaded

onpagehide

The user navigates away from a webpage

onpageshow

When the user navigates to a webpage

onresize

The document view is resized

onscroll

An element’s scrollbar is being scrolled

onunload

Event occurs when a page has unloaded

Form

onblur

When an element loses focus

onchange

The content of a form element changes (for <input>, <select>and <textarea>)

onfocus

An element gets focus

onfocusin

When an element is about to get focus

onfocusout

The element is about to lose focus

oninput

User input on an element

oninvalid

An element is invalid

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 23

onreset

A form is reset

onsearch

The user writes something in a search field (for <input="search">)

onselect

The user selects some text (for <input> and <textarea>)

onsubmit

A form is submitted

Drag

ondrag

An element is dragged

ondragend

The user has finished dragging the element

ondragenter

The dragged element enters a drop target

ondragleave

A dragged element leaves the drop target

ondragover

The dragged element is on top of the drop target

ondragstart

User starts to drag an element

ondrop

Dragged element is dropped on the drop target

Clipboard

oncopy

User copies the content of an element

oncut

The user cuts an element’s content

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 24

onpaste

A user pastes content in an element

Media

onabort

Media loading is aborted

oncanplay

The browser can start playing media (e.g. a file has buffered enough)

oncanplaythrough

When browser can play through media without stopping

ondurationchange

The duration of the media changes

onended

The media has reached its end

onerror

Happens when an error occurs while loading an external file

onloadeddata

Media data is loaded

onloadedmetadata

Meta Metadata (like dimensions and duration) are loaded

onloadstart

Browser starts looking for specified media

onpause

Media is paused either by the user or automatically

onplay

The media has been started or is no longer paused

onplaying

Media is playing after having been paused or stopped for buffering

onprogress

Browser is in the process of downloading the media

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 25

onratechange

The playing speed of the media changes

onseeked

User is finished moving/skipping to a new position in the media

onseeking

The user starts moving/skipping

onstalled

The browser is trying to load the media but it is not available

onsuspend

Browser is intentionally not loading media

ontimeupdate

The playing position has changed (e.g. because of fast forward)

onvolumechange

Media volume has changed (including mute)

onwaiting

Media paused but expected to resume (for example, buffering)

Animation

animationend

A CSS animation is complete

animationiteration

CSS animation is repeated

animationstart

CSS animation has started

Other

transitionend

Fired when a CSS transition has completed

onmessage

A message is received through the event source

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 26

onoffline

Browser starts to work offline

ononline

The browser starts to work online

onpopstate

When the window’s history changes

onshow

A <menu> element is shown as a context menu

onstorage

A Web Storage area is updated

ontoggle

The user opens or closes the <details> element

onwheel

Mouse wheel rolls up or down over an element

ontouchcancel

Screen touch is interrupted

ontouchend

User finger is removed from a touch screen

ontouchmove

A finger is dragged across the screen

ontouchstart

Finger is placed on touch screen

Errors
try

Lets you define a block of code to test for errors

catch

Set up a block of code to execute in case of an error

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 27

throw

Create custom error messages instead of the standard JavaScript errors

finally

Lets you execute code, after try and catch, regardless of the result

Error Name Values

name

Sets or returns the error name

message

Sets or returns an error message in string from

EvalError

An error has occurred in the eval() function

RangeError

A number is “out of range”

ReferenceError

An illegal reference has occurred

SyntaxError

A syntax error has occurred

TypeError

A type error has occurred

URIError

An encodeURI() error has occurred

WebsiteSetup.org - Beginner’s Javascript Cheat Sheet 28

The async...await syntax in ES6 o�ers a new way write more readable and scalable
code to handle promises. It uses the same features that were already built into
JavaScript.

function helloWorld() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('Hello World!');
 }, 2000);
 });
}

async function msg() {
 const msg = await helloWorld();
 console.log('Message:', msg);
}

msg(); // Message: Hello World! <-- after 2 seconds

An asynchronous JavaScript function can be created with the async keyword before
the function name, or before () when using the async arrow function. An async

function always returns a promise.
function helloWorld() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('Hello World!');
 }, 2000);
 });
}

const msg = async function() { //Async Function Expression
 const msg = await helloWorld();
 console.log('Message:', msg);
}

const msg1 = async () => { //Async Arrow Function
 const msg = await helloWorld();
 console.log('Message:', msg);
}

msg(); // Message: Hello World! <-- after 2 seconds
msg1(); // Message: Hello World! <-- after 2 seconds

The JavaScript async...await syntax in ES6 o�ers a new way write more readable and
scablable code to handle promises. A JavaScript async function can contain
statements preceded by an await operator. The operand of await is a promise. At an
await expression, the execution of the async function is paused and waits for the

operand promise to resolve. The await operator returns the promise’s resolved value.
An await operand can only be used inside an async function.

function helloWorld() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('Hello World!');
 }, 2000);
 });
}

async function msg() {
 const msg = await helloWorld();
 console.log('Message:', msg);
}

msg(); // Message: Hello World! <-- after 2 seconds

The JavaScript async...await syntax allows multiple promises to be initiated and then
resolved for values when required during execution of the program. As an alternate to
chaining .then() functions, it o�ers better maintainablity of the code and a close
resemblance synchronous code.

Cheatsheets / Learn JavaScript

Async-Await
Async Await Promises

Asynchronous JavaScript function

JavaScript aysnc await operator

JavaScript async…await advantage

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

JavaScript supports the concept of classes as a syntax for creating objects. Classes
specify the shared properties and methods that objects produced from the class will
have.
When an object is created based on the class, the new object is referred to as an
instance of the class. New instances are created using the new keyword.
The code sample shows a class that represents a Song . A new object called mySong is
created underneath and the .play() method on the class is called. The result would
be the text Song playing! printed in the console.

class Song {
 constructor() {
 this.title;
 this.author;
 }

 play() {
 console.log('Song playing!');
 }
}

const mySong = new Song();
mySong.play();

Classes can have a constructor method. This is a special method that is called when
the object is created (instantiated). Constructor methods are usually used to set initial
values for the object.

class Song {
 constructor(title, artist) {
 this.title = title;
 this.artist = artist;
 }
}

const mySong = new Song('Bohemian Rhapsody', 'Queen');
console.log(mySong.title);

Properties in objects are separated using commas. This is not the case when using the
class syntax. Methods in classes do not have any separators between them. class Song {

 play() {
 console.log('Playing!');
 }

 stop() {
 console.log('Stopping!');
 }
}

JavaScript classes support the concept of inheritance — a child class can extend a
parent class. This is accomplished by using the extends keyword as part of the class
de�nition.
Child classes have access to all of the instance properties and methods of the parent
class. They can add their own properties and methods in addition to those. A child
class constructor calls the parent class constructor using the super() method.

// Parent class
class Media {
 constructor(info) {
 this.publishDate = info.publishDate;
 this.name = info.name;
 }
}

// Child class
class Song extends Media {
 constructor(songData) {
 super(songData);
 this.artist = songData.artist;
 }
}

const mySong = new Song({
 artist: 'Queen',
 name: 'Bohemian Rhapsody',
 publishDate: 1975
});

Cheatsheets / Learn JavaScript

Classes
Class

Class Constructor

Class Methods

extends

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

Control �ow is the order in which statements are executed in a program. The default
control �ow is for statements to be read and executed in order from left-to-right, top-
to-bottom in a program �le.
Control structures such as conditionals (if statements and the like) alter control �ow
by only executing blocks of code if certain conditions are met. These structures
essentially allow a program to make decisions about which code is executed as the
program runs.

The logical OR operator || checks two values and returns a boolean. If one or both
values are truthy, it returns true . If both values are falsy, it returns false . true || false; // true

10 > 5 || 10 > 20; // true
false || false; // false
10 > 100 || 10 > 20; // false

The ternary operator allows for a compact syntax in the case of binary (choosing
between two choices) decisions. It accepts a condition followed by a ? operator, and
then two expressions separated by a : . If the condition evaluates to truthy, the �rst
expression is executed, otherwise, the second expression is executed.

let price = 10.5;
let day = "Monday";

day === "Monday" ? price -= 1.5 : price += 1.5;

An else block can be added to an if block or series of if - else if blocks. The
else block will be executed only if the if condition fails. const isTaskCompleted = false;

if (isTaskCompleted) {
 console.log('Task completed');
} else {
 console.log('Task incomplete');
}

The logical AND operator && checks two values and returns a boolean. If both values
are truthy, then it returns true . If one, or both, of the values is falsy, then it returns
false .

true && true; // true
1 > 2 && 2 > 1; // false
true && false; // false
4 === 4 && 3 > 1; // true

The switch statements provide a means of checking an expression against multiple
case clauses. If a case matches, the code inside that clause is executed.

The case clause should �nish with a break keyword. If no case matches but a
default clause is included, the code inside default will be executed.

Note: If break is omitted from the block of a case , the switch statement will
continue to check against case values until a break is encountered or the �ow is
broken.

const food = 'salad';

switch (food) {
 case 'oyster':
 console.log('The taste of the sea 🦪');
 break;
 case 'pizza':
 console.log('A delicious pie 🍕');
 break;
 default:
 console.log('Enjoy your meal');
}

// Prints: Enjoy your meal

Cheatsheets / Learn JavaScript

Conditionals
Control Flow

Logical Operator ||

Ternary Operator

else Statement

Logical Operator &&

switch Statement

A B A || B

false false false

false true true

true false true

true true true

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

Functions are one of the fundamental building blocks in JavaScript. A function is a
reusable set of statements to perform a task or calculate a value. Functions can be
passed one or more values and can return a value at the end of their execution. In
order to use a function, you must de�ne it somewhere in the scope where you wish to
call it.
The example code provided contains a function that takes in 2 values and returns the
sum of those numbers.

// Defining the function:
function sum(num1, num2) {
 return num1 + num2;
}

// Calling the function:
sum(3, 6); // 9

Functions can be called, or executed, elsewhere in code using parentheses following
the function name. When a function is called, the code inside its function body runs.
Arguments are values passed into a function when it is called.

// Defining the function
function sum(num1, num2) {
 return num1 + num2;
}

// Calling the function
sum(2, 4); // 6

Inputs to functions are known as parameters when a function is declared or de�ned.
Parameters are used as variables inside the function body. When the function is called,
these parameters will have the value of whatever is passed in as arguments. It is
possible to de�ne a function without parameters.

// The parameter is name
function sayHello(name) {
 return `Hello, ${name}!`;
}

Functions return (pass back) values using the return keyword. return ends function
execution and returns the speci�ed value to the location where it was called. A
common mistake is to forget the return keyword, in which case the function will
return undefined by default.

// With return
function sum(num1, num2) {
 return num1 + num2;
}

// Without return, so the function doesn't output the sum
function sum(num1, num2) {
 num1 + num2;
}

Function declarations are used to create named functions. These functions can be
called using their declared name. Function declarations are built from: function add(num1, num2) {

 return num1 + num2;
}

Anonymous functions in JavaScript do not have a name property. They can be de�ned
using the function keyword, or as an arrow function. See the code example for the
di�erence between a named function and an anonymous function.

// Named function
function rocketToMars() {
 return 'BOOM!';
}

// Anonymous function
const rocketToMars = function() {
 return 'BOOM!';
}

Cheatsheets / Learn JavaScript

Functions
Functions

Calling Functions

Function Parameters

return Keyword

Function Declaration

Anonymous Functions

The function keyword.●

The function name.●

An optional list of parameters separated by commas enclosed by a set of
parentheses () .

●

A function body enclosed in a set of curly braces {} .●

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

JavaScript is a programming language that powers the dynamic behavior on most
websites. Alongside HTML and CSS, it is a core technology that makes the web run.

The console.log() method is used to log or print messages to the console. It can also
be used to print objects and other info. console.log('Hi there!');

// Prints: Hi there!

Strings are a primitive data type. They are any grouping of characters (letters, spaces,
numbers, or symbols) surrounded by single quotes ' or double quotes " . let single = 'Wheres my bandit hat?';

let double = "Wheres my bandit hat?";

Numbers are a primitive data type. They include the set of all integers and �oating
point numbers. let amount = 6;

let price = 4.99;

Booleans are a primitive data type. They can be either true or false .
let lateToWork = true;

Null is a primitive data type. It represents the intentional absence of value. In code, it is
represented as null . let x = null;

JavaScript supports arithmetic operators for:
// Addition
5 + 5
// Subtraction
10 - 5
// Multiplication
5 * 10
// Division
10 / 5
// Modulo
10 % 5

The .length property of a string returns the number of characters that make up the
string. let message = 'good nite';

console.log(message.length);
// Prints: 9

console.log('howdy'.length);
// Prints: 5

Methods return information about an object, and are called by appending an instance
with a period . , the method name, and parentheses. // Returns a number between 0 and 1

Math.random();

When a new piece of data is introduced into a JavaScript program, the program keeps
track of it in an instance of that data type. An instance is an individual case of a data
type.

Cheatsheets / Learn JavaScript

Introduction
JavaScript

console.log()

Strings

Numbers

Booleans

Null

Arithmetic Operators

String .length

Methods

Data Instances

+ addition●

- subtraction●

* multiplication●

/ division●

% modulo●

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

In JavaScript, functions are a data type just as strings, numbers, and arrays are data
types. Therefore, functions can be assigned as values to variables, but are di�erent
from all other data types because they can be invoked.

let plusFive = (number) => {
 return number + 5;
};
// f is assigned the value of plusFive
let f = plusFive;

plusFive(3); // 8
// Since f has a function value, it can be invoked.
f(9); // 14

In JavaScript, a callback function is a function that is passed into another function as
an argument. This function can then be invoked during the execution of that higher
order function (that it is an argument of).
Since, in JavaScript, functions are objects, functions can be passed as arguments.

const isEven = (n) => {
 return n % 2 == 0;
}

let printMsg = (evenFunc, num) => {
 const isNumEven = evenFunc(num);
 console.log(`The number ${num} is an even number:
${isNumEven}.`)
}

// Pass in isEven as the callback function
printMsg(isEven, 4);
// Prints: The number 4 is an even number: True.

In Javascript, functions can be assigned to variables in the same way that strings or
arrays can. They can be passed into other functions as parameters or returned from
them as well.
A “higher-order function” is a function that accepts functions as parameters and/or
returns a function.

The .reduce() method iterates through an array and returns a single value.
It takes a callback function with two parameters (accumulator, currentValue) as
arguments. On each iteration, accumulator is the value returned by the last iteration,
and the currentValue is the current element. Optionally, a second argument can be
passed which acts as the initial value of the accumulator.
Here, the .reduce() method will sum all the elements of the array.

const arrayOfNumbers = [1, 2, 3, 4];

const sum = arrayOfNumbers.reduce((accumulator, currentValue)
=> {
 return accumulator + currentValue;
});

console.log(sum); // 10

The .forEach() method executes a callback function on each of the elements in an
array in order.
Here, the callback function containing a console.log() method will be executed 5

times, once for each element.

const numbers = [28, 77, 45, 99, 27];

numbers.forEach(number => {
 console.log(number);
});

The .filter() method executes a callback function on each element in an array. The
callback function for each of the elements must return either true or false . The
returned array is a new array with any elements for which the callback function returns
true .

Here, the array filteredArray will contain all the elements of randomNumbers but 4 .

const randomNumbers = [4, 11, 42, 14, 39];
const filteredArray = randomNumbers.filter(n => {
 return n > 5;
});

Cheatsheets / Learn JavaScript

Iterators
Functions Assigned to Variables

Callback Functions

Higher-Order Functions

Array Method .reduce()

Array Method .forEach()

Array Method .filter()

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

The while loop creates a loop that is executed as long as a speci�ed condition
evaluates to true . The loop will continue to run until the condition evaluates to
false . The condition is speci�ed before the loop, and usually, some variable is

incremented or altered in the while loop body to determine when the loop should
stop.

while (condition) {
 // code block to be executed
}

let i = 0;

while (i < 5) {
 console.log(i);
 i++;
}

A for loop can iterate “in reverse” by initializing the loop variable to the starting
value, testing for when the variable hits the ending value, and decrementing
(subtracting from) the loop variable at each iteration.

const items = ['apricot', 'banana', 'cherry'];

for (let i = items.length - 1; i >= 0; i -= 1) {
 console.log(`${i}. ${items[i]}`);
}

// Prints: 2. cherry
// Prints: 1. banana
// Prints: 0. apricot

A do...while statement creates a loop that executes a block of code once, checks if a
condition is true, and then repeats the loop as long as the condition is true. They are
used when you want the code to always execute at least once. The loop ends when the
condition evaluates to false.

x = 0
i = 0

do {
 x = x + i;
 console.log(x)
 i++;
} while (i < 5);

// Prints: 0 1 3 6 10

A for loop declares looping instructions, with three important pieces of information
separated by semicolons ; : for (let i = 0; i < 4; i += 1) {

 console.log(i);
};

// Output: 0, 1, 2, 3

An array’s length can be evaluated with the .length property. This is extremely helpful
for looping through arrays, as the .length of the array can be used as the stopping
condition in the loop.

for (let i = 0; i < array.length; i++){
 console.log(array[i]);
}

// Output: Every item in the array

Cheatsheets / Learn JavaScript

Loops
While Loop

Reverse Loop

Do…While Statement

For Loop

Looping Through Arrays

The initialization de�nes where to begin the loop by declaring (or referencing)
the iterator variable

●

The stopping condition determines when to stop looping (when the expression
evaluates to false)

●

The iteration statement updates the iterator each time the loop is completed●

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

Properties of a JavaScript object can be accessed using the dot notation in this
manner: object.propertyName . Nested properties of an object can be accessed by
chaining key names in the correct order.

const apple = {
 color: 'Green',
 price: {
 bulk: '$3/kg',
 smallQty: '$4/kg'
 }
};
console.log(apple.color); // 'Green'
console.log(apple.price.bulk); // '$3/kg'

JavaScript object key names must adhere to some restrictions to be valid. Key names
must either be strings or valid identi�er or variable names (i.e. special characters such
as - are not allowed in key names that are not strings).

// Example of invalid key names
const trainSchedule = {
 platform num: 10, // Invalid because of the space between
words.
 40 - 10 + 2: 30, // Expressions cannot be keys.
 +compartment: 'C' // The use of a + sign is invalid unless
it is enclosed in quotations.
}

An object is a built-in data type for storing key-value pairs. Data inside objects are
unordered, and the values can be of any type.

When trying to access a JavaScript object property that has not been de�ned yet, the
value of undefined will be returned by default. const classElection = {

 date: 'January 12'
};

console.log(classElection.place); // undefined

JavaScript objects are mutable, meaning their contents can be changed, even when
they are declared as const . New properties can be added, and existing property
values can be changed or deleted.
It is the reference to the object, bound to the variable, that cannot be changed.

const student = {
 name: 'Sheldon',
 score: 100,
 grade: 'A',
}

console.log(student)
// { name: 'Sheldon', score: 100, grade: 'A' }

delete student.score
student.grade = 'F'
console.log(student)
// { name: 'Sheldon', grade: 'F' }

student = {}
// TypeError: Assignment to constant variable.

Cheatsheets / Learn JavaScript

Objects
Dot Notation for Accessing Object Properties

Restrictions in Naming Properties

Objects

Accessing non-existent JavaScript properties

JavaScript Objects are Mutable

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

A JavaScript Promise is an object that can be used to get the outcome of an
asynchronous operation when that result is not instantly available.
Since JavaScript code runs in a non-blocking manner, promises become essential
when we have to wait for some asynchronous operation without holding back the
execution of the rest of the code.

A JavaScript Promise object can be in one of three states: pending , resolved , or
rejected .

While the value is not yet available, the Promise stays in the pending state.
Afterwards, it transitions to one of the two states: resolved or rejected .
A resolved promise stands for a successful completion. Due to errors, the promise may
go in the rejected state.
In the given code block, if the Promise is on resolved state, the �rst parameter
holding a callback function of the then() method will print the resolved value.
Otherwise, an alert will be shown.

const promise = new Promise((resolve, reject) => {
 const res = true;
 // An asynchronous operation.
 if (res) {
 resolve('Resolved!');
 }
 else {
 reject(Error('Error'));
 }
});

promise.then((res) => console.log(res), (err) => alert(err));

An instance of a JavaScript Promise object is created using the new keyword.
The constructor of the Promise object takes a function, known as the executor
function, as the argument. This function is responsible for resolving or rejecting the
promise.

const executorFn = (resolve, reject) => {
 console.log('The executor function of the promise!');
};

const promise = new Promise(executorFn);

A JavaScript promise’s executor function takes two functions as its arguments. The �rst
parameter represents the function that should be called to resolve the promise and
the other one is used when the promise should be rejected. A Promise object may use
any one or both of them inside its executor function.
In the given example, the promise is always resolved unconditionally by the resolve

function. The reject function could be used for a rejection.

const executorFn = (resolve, reject) => {
 resolve('Resolved!');
};

const promise = new Promise(executorFn);

setTimeout() is an asynchronous JavaScript function that executes a code block or
evaluates an expression through a callback function after a delay set in milliseconds. const loginAlert = () =>{

 alert('Login');
};

setTimeout(loginAlert, 6000);

The .then() method of a JavaScript Promise object can be used to get the eventual
result (or error) of the asynchronous operation.
.then() accepts two function arguments. The �rst handler supplied to it will be called

if the promise is resolved. The second one will be called if the promise is rejected.

const promise = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('Result');
 }, 200);
});

promise.then((res) => {
 console.log(res);
}, (err) => {
 alert(err);
});

Cheatsheets / Learn JavaScript

Promises
JavaScript Promise Object

States of a JavaScript Promise

Creating a Javascript Promise object

Executor function of JavaScript Promise object

setTimeout()

.then() method of a JavaScript Promise object

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

The .then() method returns a Promise, even if one or both of the handler functions
are absent. Because of this, multiple .then() methods can be chained together. This
is known as composition.
In the code block, a couple of .then() methods are chained together. Each method
deals with the resolved value of their respective promises.

const promise = new Promise(resolve => setTimeout(() =>
resolve('dAlan'), 100));

promise.then(res => {
 return res === 'Alan' ? Promise.resolve('Hey Alan!')
: Promise.reject('Who are you?')
}).then((res) => {
 console.log(res)
}, (err) => {
 alert(err)
});

The function passed as the second argument to a .then() method of a promise
object is used when the promise is rejected. An alternative to this approach is to use
the JavaScript .catch() method of the promise object. The information for the
rejection is available to the handler supplied in the .catch() method.

const promise = new Promise((resolve, reject) => {
 setTimeout(() => {
 reject(Error('Promise Rejected Unconditionally.'));
 }, 1000);
});

promise.then((res) => {
 console.log(value);
});

promise.catch((err) => {
 alert(err);
});

In JavaScript, when performing multiple asynchronous operations in a sequence,
promises should be composed by chaining multiple .then() methods. This is better
practice than nesting.
Chaining helps streamline the development process because it makes the code more
readable and easier to debug.

const promise = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('*');
 }, 1000);
});

const twoStars = (star) => {
 return (star + star);
};

const oneDot = (star) => {
 return (star + '.');
};

const print = (val) => {
 console.log(val);
};

// Chaining them all together
promise.then(twoStars).then(oneDot).then(print);

Chaining multiple .then() methods

The .catch() method for handling rejection

Avoiding nested Promise and .then()

The JavaScript Promise.all() method can be used to execute multiple promises in
parallel. The function accepts an array of promises as an argument. If all of the
promises in the argument are resolved, the promise returned from Promise.all() will
resolve to an array containing the resolved values of all the promises in the order of the
initial array. Any rejection from the list of promises will cause the greater promise to be
rejected.
In the code block, 3 and 2 will be printed respectively even though promise1 will be
resolved after promise2 .

const promise1 = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(3);
 }, 300);
});
const promise2 = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(2);
 }, 200);
});

Promise.all([promise1, promise2]).then((res) => {
 console.log(res[0]);
 console.log(res[1]);
});

JavaScript Promise.all()

The JavaScript for...in loop can be used to iterate over the keys of an object. In
each iteration, one of the properties from the object is assigned to the variable of that
loop.

let mobile = {
 brand: 'Samsung',
 model: 'Galaxy Note 9'
};

for (let key in mobile) {
 console.log(`${key}: ${mobile[key]}`);
}

A JavaScript object literal is enclosed with curly braces {} . Values are mapped to keys
in the object with a colon (:), and the key-value pairs are separated by commas. All
the keys are unique, but values are not.
Key-value pairs of an object are also referred to as properties.

const classOf2018 = {
 students: 38,
 year: 2018
}

Once an object is created in JavaScript, it is possible to remove properties from the
object using the delete operator. The delete keyword deletes both the value of the
property and the property itself from the object. The delete operator only works on
properties, not on variables or functions.

const person = {
 firstName: "Matilda",
 age: 27,
 hobby: "knitting",
 goal: "learning JavaScript"
};

delete person.hobby; // or delete person[hobby];

console.log(person);
/*
{
 firstName: "Matilda"
 age: 27
 goal: "learning JavaScript"
}
*/

When JavaScript objects are passed as arguments to functions or methods, they are
passed by reference, not by value. This means that the object itself (not a copy) is
accessible and mutable (can be changed) inside that function.

const origNum = 8;
const origObj = {color: 'blue'};

const changeItUp = (num, obj) => {
 num = 7;
 obj.color = 'red';
};

changeItUp(origNum, origObj);

// Will output 8 since integers are passed by value.
console.log(origNum);

// Will output 'red' since objects are passed
// by reference and are therefore mutable.
console.log(origObj.color);

JavaScript for...in loop

Properties and values of a JavaScript object

Delete operator

javascript passing objects as arguments

JavaScript objects may have property values that are functions. These are referred to
as object methods.
Methods may be de�ned using anonymous arrow function expressions, or with
shorthand method syntax.
Object methods are invoked with the syntax: objectName.methodName(arguments) .

const engine = {
 // method shorthand, with one argument
 start(adverb) {
 console.log(`The engine starts up ${adverb}...`);
 },
 // anonymous arrow function expression with no arguments
 sputter: () => {
 console.log('The engine sputters...');
 },
};

engine.start('noisily');
engine.sputter();

/* Console output:
The engine starts up noisily...
The engine sputters...
*/

The reserved keyword this refers to a method’s calling object, and it can be used to
access properties belonging to that object.
Here, using the this keyword inside the object function to refer to the cat object
and access its name property.

const cat = {
 name: 'Pipey',
 age: 8,
 whatName() {
 return this.name
 }
};

console.log(cat.whatName());
// Output: Pipey

Every JavaScript function or method has a this context. For a function de�ned inside
of an object, this will refer to that object itself. For a function de�ned outside of an
object, this will refer to the global object (window in a browser, global in Node.js).

const restaurant = {
 numCustomers: 45,
 seatCapacity: 100,
 availableSeats() {
 // this refers to the restaurant object
 // and it's used to access its properties
 return this.seatCapacity - this.numCustomers;
 }
}

JavaScript arrow functions do not have their own this context, but use the this of
the surrounding lexical context. Thus, they are generally a poor choice for writing
object methods.
Consider the example code:
loggerA is a property that uses arrow notation to de�ne the function. Since data

does not exist in the global context, accessing this.data returns undefined .
loggerB uses method syntax. Since this refers to the enclosing object, the value of

the data property is accessed as expected, returning "abc" .

const myObj = {
 data: 'abc',
 loggerA: () => { console.log(this.data); },
 loggerB() { console.log(this.data); },
};

myObj.loggerA(); // undefined
myObj.loggerB(); // 'abc'

JavaScript Object Methods

this Keyword

javascript function this

JavaScript Arrow Function this Scope

JavaScript object properties are not private or protected. Since JavaScript objects are
passed by reference, there is no way to fully prevent incorrect interactions with object
properties.
One way to implement more restricted interactions with object properties is to use
getter and setter methods.
Typically, the internal value is stored as a property with an identi�er that matches the
getter and setter method names, but begins with an underscore (_).

const myCat = {
 _name: 'Dottie',
 get name() {
 return this._name;
 },
 set name(newName) {
 this._name = newName;
 }
};

// Reference invokes the getter
console.log(myCat.name);

// Assignment invokes the setter
myCat.name = 'Yankee';

JavaScript getter and setter methods are helpful in part because they o�er a way to
intercept property access and assignment, and allow for additional actions to be
performed before these changes go into e�ect.

const myCat = {
 _name: 'Snickers',
 get name(){
 return this._name
 },
 set name(newName){
 //Verify that newName is a non-empty string before setting
as name property
 if (typeof newName === 'string' && newName.length > 0){
 this._name = newName;
 } else {
 console.log("ERROR: name must be a non-empty string");
 }
 }
}

A JavaScript function that returns an object is known as a factory function. Factory
functions often accept parameters in order to customize the returned object. // A factory function that accepts 'name',

// 'age', and 'breed' parameters to return
// a customized dog object.
const dogFactory = (name, age, breed) => {
 return {
 name: name,
 age: age,
 breed: breed,
 bark() {
 console.log('Woof!');
 }
 };
};

The JavaScript destructuring assignment is a shorthand syntax that allows object
properties to be extracted into speci�c variable values.
It uses a pair of curly braces ({}) with property names on the left-hand side of an
assignment to extract values from objects. The number of variables can be less than
the total properties of an object.

const rubiksCubeFacts = {
 possiblePermutations: '43,252,003,274,489,856,000',
 invented: '1974',
 largestCube: '17x17x17'
};
const {possiblePermutations, invented, largestCube}
= rubiksCubeFacts;
console.log(possiblePermutations); //
'43,252,003,274,489,856,000'
console.log(invented); // '1974'
console.log(largestCube); // '17x17x17'

javascript getters and setters restricted

getters and setters intercept property access

javascript factory functions

JavaScript destructuring assignment shorthand syntax

The shorthand property name syntax in JavaScript allows creating objects without
explicitly specifying the property names (ie. explicitly declaring the value after the key).
In this process, an object is created where the property names of that object match
variables which already exist in that context. Shorthand property names populate an
object with a key matching the identi�er and a value matching the identi�er’s value.

const activity = 'Surfing';
const beach = { activity };
console.log(beach); // { activity: 'Surfing' }

shorthand property name syntax for object creation

Within a loop, the break keyword may be used to exit the loop immediately,
continuing execution after the loop body.
Here, the break keyword is used to exit the loop when i is greater than 5.

for (let i = 0; i < 99; i += 1) {
 if (i > 5) {
 break;
 }
 console.log(i)
}

// Output: 0 1 2 3 4 5

A nested for loop is when a for loop runs inside another for loop.
The inner loop will run all its iterations for each iteration of the outer loop. for (let outer = 0; outer < 2; outer += 1) {

 for (let inner = 0; inner < 3; inner += 1) {
 console.log(`${outer}-${inner}`);
 }
}

/*
Output:
0-0
0-1
0-2
1-0
1-1
1-2
*/

A loop is a programming tool that is used to repeat a set of instructions. Iterate is a
generic term that means “to repeat” in the context of loops. A loop will continue to
iterate until a speci�ed condition, commonly known as a stopping condition, is met.

Break Keyword

Nested For Loop

Loops

The .map() method executes a callback function on each element in an array. It
returns a new array made up of the return values from the callback function.
The original array does not get altered, and the returned array may contain di�erent
elements than the original array.

const finalParticipants = ['Taylor', 'Donald', 'Don',
'Natasha', 'Bobby'];

const announcements = finalParticipants.map(member => {
 return member + ' joined the contest.';
})

console.log(announcements);

Array Method .map()

Libraries contain methods that can be called by appending the library name with a
period . , the method name, and a set of parentheses. Math.random();

// ☝ Math is the library

The Math.random() function returns a �oating-point, random number in the range
from 0 (inclusive) up to but not including 1. console.log(Math.random());

// Prints: 0 - 0.9

The Math.floor() function returns the largest integer less than or equal to the given
number. console.log(Math.floor(5.95));

// Prints: 5

In JavaScript, single-line comments are created with two consecutive forward slashes
// . // This line will denote a comment

In JavaScript, multi-line comments are created by surrounding the lines with /* at
the beginning and */ at the end. Comments are good ways for a variety of reasons
like explaining a code block or indicating some hints, etc.

/*
The below configuration must be
changed before deployment.
*/

let baseUrl = 'localhost/taxwebapp/country';

The remainder operator, sometimes called modulo, returns the number that remains
after the right-hand number divides into the left-hand number as many times as it
evenly can.

// calculates # of weeks in a year, rounds down to nearest
integer
const weeksInYear = Math.floor(365/7);

// calcuates the number of days left over after 365 is divded
by 7
const daysLeftOver = 365 % 7 ;

console.log("A year has " + weeksInYear + " weeks and "
+ daysLeftOver + " days");

A variable is a container for data that is stored in computer memory. It is referenced by
a descriptive name that a programmer can call to assign a speci�c value and retrieve it. // examples of variables

let name = "Tammy";
const found = false;
var age = 3;
console.log(name, found, age);
// Tammy, false, 3

A constant variable can be declared using the keyword const . It must have an
assignment. Any attempt of re-assigning a const variable will result in JavaScript
runtime error.

const numberOfColumns = 4;
numberOfColumns = 8;
// TypeError: Assignment to constant variable.

let creates a local variable in JavaScript & can be re-assigned. Initialization during
the declaration of a let variable is optional. A let variable will contain undefined if
nothing is assigned to it.

let count;
console.log(count); // Prints: undefined
count = 10;
console.log(count); // Prints: 10

Libraries

Math.random()

Math.floor()

Single Line Comments

Multi-line Comments

Remainder / Modulo Operator

Learn Javascript: Variables

const Keyword

let Keyword

undefined is a primitive JavaScript value that represents lack of de�ned value.
Variables that are declared but not initialized to a value will have the value undefined . var a;

console.log(a);
// Prints: undefined

An assignment operator assigns a value to its left operand based on the value of its
right operand. Here are some of them: let number = 100;

// Both statements will add 10
number = number + 10;
number += 10;

console.log(number);
// Prints: 120

In JavaScript, multiple strings can be concatenated together using the + operator. In
the example, multiple strings and variables containing string values have been
concatenated. After execution of the code block, the displayText variable will contain
the concatenated string.

let service = 'credit card';
let month = 'May 30th';
let displayText = 'Your ' + service + ' bill is due on '
+ month + '.';

console.log(displayText);
// Prints: Your credit card bill is due on May 30th.

String interpolation is the process of evaluating string literals containing one or more
placeholders (expressions, variables, etc).
It can be performed using template literals: text ${expression} text .

let age = 7;

// String concatenation
'Tommy is ' + age + ' years old.';

// String interpolation
`Tommy is ${age} years old.`;

Template literals are strings that allow embedded expressions, ${expression} . While
regular strings use single ' or double " quotes, template literals use backticks
instead.

let name = "Codecademy";
console.log(`Hello, ${name}`);
// Prints: Hello, Codecademy

console.log(`Billy is ${6+8} years old.`);
// Prints: Billy is 14 years old.

Variables are used whenever there’s a need to store a piece of data. A variable
contains data that can be used in the program elsewhere. Using variables also ensures
code re-usability since it can be used to replace the same value in multiple places.

const currency = '$';
let userIncome = 85000;

console.log(currency + userIncome + ' is more than the average
income.');
// Prints: $85000 is more than the average income.

To declare a variable in JavaScript, any of these three keywords can be used along with
a variable name: var age;

let weight;
const numberOfFingers = 20;

Unde�ned

Assignment Operators

String Concatenation

String Interpolation

Template Literals

Variables

Declaring Variables

+= addition assignment●

-= subtraction assignment●

*= multiplication assignment●

/= division assignment●

var is used in pre-ES6 versions of JavaScript.●

let is the preferred way to declare a variable when it can be reassigned.●

const is the preferred way to declare a variable with a constant value.●

Function expressions create functions inside an expression instead of as a function
declaration. They can be anonymous and/or assigned to a variable. const dog = function() {

 return 'Woof!';
}

Arrow function expressions were introduced in ES6. These expressions are clean and
concise. The syntax for an arrow function expression does not require the function

keyword and uses a fat arrow => to separate the parameter(s) from the body.
There are several variations of arrow functions:

// Arrow function with two arguments
const sum = (firstParam, secondParam) => {
 return firstParam + secondParam;
};
console.log(sum(2,5)); // Prints: 7

// Arrow function with no arguments
const printHello = () => {
 console.log('hello');
};
printHello(); // Prints: hello

// Arrow functions with a single argument
const checkWeight = weight => {
 console.log(`Baggage weight : ${weight} kilograms.`);
};
checkWeight(25); // Prints: Baggage weight : 25 kilograms.

// Concise arrow functions
const multiply = (a, b) => a * b;
console.log(multiply(2, 30)); // Prints: 60

Function Expressions

Arrow Functions (ES6)

Arrow functions with a single parameter do not require () around the
parameter list.

●

Arrow functions with a single expression can use the concise function body
which returns the result of the expression without the return keyword.

●

AJAX enables HTTP requests to be made not only during the load time of a web page
but also anytime after a page initially loads. This allows adding dynamic behavior to a
webpage. This is essential for giving a good user experience without reloading the
webpage for transferring data to and from the web server.
The XMLHttpRequest (XHR) web API provides the ability to make the actual
asynchronous request and uses AJAX to handle the data from the request.
The given code block is a basic example of how an HTTP GET request is made to the
speci�ed URL.

const xhr = new XMLHttpRequest();
xhr.open('GET', 'mysite.com/api/getjson');

HTTP POST requests are made with the intention of sending new information to the
source (server) that will receive it.
For a POST request, the new information is stored in the body of the request.

HTTP GET requests are made with the intention of retrieving information or data from
a source (server) over the web.
GET requests have no body, so the information that the source requires, in order to

return the proper response, must be included in the request URL path or query string.

Query strings are used to send additional information to the server during an HTTP
GET request.
The query string is separated from the original URL using the question mark character
? .

In a query string, there can be one or more key-value pairs joined by the equal
character = .
For separating multiple key-value pairs, an ampersand character & is used.
Query strings should be url-encoded in case of the presence of URL unsafe
characters.

const requestUrl = 'http://mysite.com/api/vendor?
name=kavin&id=35412';

JSON or JavaScript Object Notation is a data format suitable for transporting data to
and from a server.
It is essentially a slightly stricter version of a Javascript object. A JSON object should
be enclosed in curly braces and may contain one or more property-value pairs. JSON
names require double quotes, while standard Javascript objects do not.

const jsonObj = {
 "name": "Rick",
 "id": "11A",
 "level": 4
};

The request type, response type, request URL, and handler for the response data must
be provided in order to make an HTTP GET request with the JavaScript
XMLHttpRequest API.

The URL may contain additional data in the query string. For an HTTP GET request, the
request type must be GET .

const req = new XMLHttpRequest();
req.responseType = 'json';
req.open('GET', '/myendpoint/getdata?id=65');
req.onload = () => {
 console.log(req.response);
};

req.send();

Cheatsheets / Learn JavaScript

Requests
Asynchronous calls with XMLHttpRequest

HTTP POST request

HTTP GET request

The query string in a URL

JSON: JavaScript Object Notation

XMLHttpRequest GET Request Requirements

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

Scope is a concept that refers to where values and functions can be accessed.
Various scopes include: function myFunction() {

 var pizzaName = "Volvo";
 // Code here can use pizzaName

}

// Code here can't use pizzaName

const and let are block scoped variables, meaning they are only accessible in their
block or nested blocks. In the given code block, trying to print the statusMessage using
the console.log() method will result in a ReferenceError . It is accessible only inside
that if block.

const isLoggedIn = true;

if (isLoggedIn == true) {
 const statusMessage = 'User is logged in.';
}

console.log(statusMessage);

// Uncaught ReferenceError: statusMessage is not defined

JavaScript variables that are declared outside of blocks or functions can exist in the
global scope, which means they are accessible throughout a program. Variables
declared outside of smaller block or function scopes are accessible inside those
smaller scopes.
Note: It is best practice to keep global variables to a minimum.

// Variable declared globally
const color = 'blue';

function printColor() {
 console.log(color);
}

printColor(); // Prints: blue

Cheatsheets / Learn JavaScript

Scope
Scope

Block Scoped Variables

Global Variables

Global scope (a value/function in the global scope can be used anywhere in the
entire program)

●

File or module scope (the value/function can only be accessed from within the
�le)

●

Function scope (only visible within the function),●

Code block scope (only visible within a { ... } codeblock)●

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-introduction/cheatsheet

To make an HTTP POST request with the JavaScript XMLHttpRequest API, a request
type, response type, request URL, request body, and handler for the response data
must be provided. The request body is essential because the information sent via the
POST method is not visible in the URL. The request type must be POST for this case.
The response type can be a variety of types including array bu�er, json, etc.

const data = {
 fish: 'Salmon',
 weight: '1.5 KG',
 units: 5
};
const xhr = new XMLHttpRequest();
xhr.open('POST', '/inventory/add');
xhr.responseType = 'json';
xhr.send(JSON.stringify(data));

xhr.onload = () => {
 console.log(xhr.response);
};

In a Fetch API function fetch() the ok property of a response checks to see if it
evaluates to true or false . In the code example the .ok property will be true

when the HTTP request is successful. The .ok property will be false when the HTTP
request is unsuccessful.

 fetch(url, {
 method: 'POST',
 headers: {
 'Content-type': 'application/json',
 'apikey': apiKey
 },
 body: data
 }).then(response => {
 if (response.ok) {
 return response.json();
 }
 throw new Error('Request failed!');
 }, networkError => {
 console.log(networkError.message)
 })
}

The .json() method will resolve a returned promise to a JSON object, parsing the
body text as JSON.
The example block of code shows .json() method that returns a promise that
resolves to a JSON-formatted response body as a JavaScript object.

fetch('url-that-returns-JSON')
.then(response => response.json())
.then(jsonResponse => {
 console.log(jsonResponse);
});

A JavaScript Fetch API is used to access and manipulate requests and responses within
the HTTP pipeline, fetching resources asynchronously across a network.
A basic fetch() request will accept a URL parameter, send a request and contain a
success and failure promise handler function.
In the example, the block of code begins by calling the fetch() function. Then a
then() method is chained to the end of the fetch() . It ends with the response

callback to handle success and the rejection callback to handle failure.

fetch('url')
.then(
 response => {
 console.log(response);
 },
 rejection => {
 console.error(rejection.message);
);

HTTP POST request with the XMLHttpRequest API

ok property fetch api

JSON Formatted response body

promise url parameter fetch api

The Fetch API function fetch() can be used to create requests. Though accepting
additional arguments, the request can be customized. This can be used to change the
request type, headers, specify a request body, and much more as shown in the
example block of code.

fetch('https://api-to-call.com/endpoint', {
 method: 'POST',
 body: JSON.stringify({id: "200"})
}).then(response => {
 if(response.ok){
 return response.json();
 }
 throw new Error('Request failed!');
}, networkError => {
 console.log(networkError.message);
}).then(jsonResponse => {
 console.log(jsonResponse);
})

The async…await syntax is used with the JS Fetch API fetch() to work with promises.
In the code block example we see the keyword async placed the function. This means
that the function will return a promise. The keyword await makes the JavaScript wait
until the problem is resolved.

const getSuggestions = async () => {
 const wordQuery = inputField.value;
 const endpoint = `${url}${queryParams}${wordQuery}`;
 try{
const response = __~await~__ __~fetch(endpoint, {cache: 'no-
cache'});
 if(response.ok){
 const jsonResponse = await response.json()
 }
 }
 catch(error){
 console.log(error)
 }
}

Fetch API Function

async await syntax

An if statement accepts an expression with a set of parentheses:
const isMailSent = true;

if (isMailSent) {
 console.log('Mail sent to recipient');
}

In JavaScript, values evaluate to true or false when evaluated as Booleans.

Falsy values include false , 0 , empty strings, null undefined , and NaN . All other
values are truthy.

The logical NOT operator ! can be used to do one of the following:
let lateToWork = true;
let oppositeValue = !lateToWork;

console.log(oppositeValue);
// Prints: false

Comparison operators are used to comparing two values and return true or false

depending on the validity of the comparison: 1 > 3 // false
3 > 1 // true
250 >= 250 // true
1 === 1 // true
1 === 2 // false
1 === '1' // false

After an initial if block, else if blocks can each check an additional condition. An
optional else block can be added after the else if block(s) to run by default if none
of the conditionals evaluated to truthy.

const size = 10;

if (size > 100) {
 console.log('Big');
} else if (size > 20) {
 console.log('Medium');
} else if (size > 4) {
 console.log('Small');
} else {
 console.log('Tiny');
}
// Print: Small

if Statement

Truthy and Falsy

Logical Operator !

Comparison Operators

else if Clause

If the expression evaluates to a truthy value, then the code within its code body
executes.

●

If the expression evaluates to a falsy value, its code body will not execute.●

Values that evaluate to true are known as truthy●

Values that evaluate to false are known as falsy●

Invert a Boolean value.●

Invert the truthiness of non-Boolean values.●

=== strict equal●

!== strict not equal●

> greater than●

>= greater than or equal●

< less than●

<= less than or equal●

Within a JavaScript class, the static keyword de�nes a static method for a class.
Static methods are not called on individual instances of the class, but are called on the
class itself. Therefore, they tend to be general (utility) methods.

class Dog {
 constructor(name) {
 this._name = name;
 }

 introduce() {
 console.log('This is ' + this._name + ' !');
 }

 // A static method
 static bark() {
 console.log('Woof!');
 }
}

const myDog = new Dog('Buster');
myDog.introduce();

// Calling the static method
Dog.bark();

Static Methods

JavaScript async functions uses try...catch statements for error handling. This
method allows shared error handling for synchronous and asynchronous code. let json = '{ "age": 30 }'; // incomplete data

try {
 let user = JSON.parse(json); // <-- no errors
 alert(user.name); // no name!
} catch (e) {
 alert("Invalid JSON data!");
}

Constructing one or more promises or calls without await can allow multiple async

functions to execute simultaneously. Through this approach, a program can take
advantage of concurrency, and asynchronous actions can be initiated within an async

function. Since using the await keyword halts the execution of an async function,
each async function can be awaited once its value is required by program logic.

When using JavaScript async...await , multiple asynchronous operations can run
concurrently. If the resolved value is required for each promise initiated,
Promise.all() can be used to retrieve the resolved value, avoiding unnecessary

blocking.

let promise1 = Promise.resolve(5);
let promise2 = 44;
let promise3 = new Promise(function(resolve, reject) {
 setTimeout(resolve, 100, 'foo');
});

Promise.all([promise1, promise2,
promise3]).then(function(values) {
 console.log(values);
});
// expected output: Array [5, 44, "foo"]

Async Function Error Handling

Using async await syntax

Resolving JavaScript Promises

