
GitLab | everyone can contribute about.gitlab.com

Git configuration

Starting A Project

$ git config --global user.name “Your Name”
Set the name that will be attached to your commits and tags.

$ git config --global user.email “you@example.com”
Set the e-mail address that will be attached to your commits and tags.

$ git config --global color.ui auto
Enable some colorization of Git output.

$ git init [project name]
Create a new local repository. If [project name] is provided, Git will
create a new directory name [project name] and will initialize a
repository inside it. If [project name] is not provided, then a new
repository is initialized in the current directory.

$ git clone [project url]
Downloads a project with the entire history from the remote repository.

01

02

Git Cheat Sheet

Day-To-Day Work
$ git status
Displays the status of your working directory. Options include new,
staged, and modified files. It will retrieve branch name, current commit
identifier, and changes pending commit.

$ git add [file]
Add a file to the staging area. Use in place of the full file path to add all
changed files from the current directory down into the directory tree.

$ git diff [file]
Show changes between working directory and staging area.

$ git diff --staged [file]
Shows any changes between the staging area and the repository.

$ git checkout -- [file]
Discard changes in working directory. This operation is unrecovera-
ble.

$ git reset [file]
Revert your repository to a previous known working state.

$ git commit
Create a new commit from changes added to the staging area.
The commit must have a message!

03

https://about.gitlab.com/

GitLab | everyone can contribute about.gitlab.com

Git branching model
$ git branch [-a]
List all local branches in repository. With -a: show all branches
(with remote).

$ git branch [branch_name]
Create new branch, referencing the current HEAD.

$ git checkout [-b][branch_name]
Switch working directory to the specified branch. With -b: Git will
create the specified branch if it does not exist.

$ git merge [from name]
Join specified [from name] branch into your current branch (the one
you are on currently).

$ git branch -d [name]
Remove selected branch, if it is already merged into any other.
-D instead of -d forces deletion.

04

$ git rm [file]
Remove file from working directory and staging area.

$ git stash
Put current changes in your working directory into stash for later use.

$ git stash pop
Apply stored stash content into working directory, and clear stash.

$ git stash drop
Delete a specific stash from all your previous stashes.

Review your work
$ git log [-n count]
List commit history of current branch. -n count limits list to last n
commits.

$ git log --oneline --graph --decorate
An overview with reference labels and history graph. One commit
per line.

$ git log ref..
List commits that are present on the current branch and not merged
into ref. A ref can be a branch name or a tag name.

$ git log ..ref
List commit that are present on ref and not merged into current
branch.

$ git reflog
List operations (e.g. checkouts or commits) made on local repository.

05

https://about.gitlab.com/

GitLab | everyone can contribute about.gitlab.com

Tagging known commits

Reverting changes

Synchronizing repositories
$ git tag
List all tags.

$ git tag [name] [commit sha]
Create a tag reference named name for current commit. Add commit
sha to tag a specific commit instead of current one.

$ git tag -a [name] [commit sha]
Create a tag object named name for current commit.

$ git tag -d [name]
Remove a tag from local repository.

$ git reset [--hard] [target reference]
Switches the current branch to the target reference, leaving
a difference as an uncommitted change. When --hard is used,
all changes are discarded.

$ git revert [commit sha]
Create a new commit, reverting changes from the specified commit.
It generates an inversion of changes.

$ git fetch [remote]
Fetch changes from the remote, but not update tracking branches.

$ git fetch --prune [remote]
Delete remote Refs that were removed from the remote repository.

$ git pull [remote]
Fetch changes from the remote and merge current branch with its
upstream.

$ git push [--tags] [remote]
Push local changes to the remote. Use --tags to push tags.

$ git push -u [remote] [branch]
Push local branch to remote repository. Set its copy as an upstream.

06

07

08

Commit
Branch

Tag
Head

an object

a reference to a commit; can have a tracked upstream
a reference (standard) or an object (annotated)

a place where your working directory is now

https://about.gitlab.com/

GitLab | everyone can contribute about.gitlab.com

Ignoring Files

Ignoring Files

$ cat .gitignore
/logs/*
!logs/.gitkeep
/tmp
*.swp
Verify the .gitignore file exists in your project and ignore certain type
of files, such as all files in logs directory (excluding the .gitkeep file),
whole tmp directory and all files *.swp. File ignoring will work for the
directory (and children directories) where .gitignore file is placed.

B

C

Git installation The zoo of working areas
For GNU/Linux distributions, Git should be available in the standard
system repository. For example, in Debian/Ubuntu please type in
the terminal:
$ sudo apt-get install git
If you need to install Git from source, you can get it from
git-scm.com/downloads.

An excellent Git course can be found in the great Pro Git book by
Scott Chacon and Ben Straub. The book is available online for free
at git-scm.com/book.

Remote repository named origin? You’ve
probably made git clone from here.

Changes committed here will be safe. If you are
doing backups! You are doing it, right?

Git fetch or git pull Git push

Git commit

Git reset HEAD

Git stash

Git stash pop

Git add

Git push public master Remote repositories

Local repositories

Another remote repository. Git is a distributed
version control system. You can have as many
remote repositories as you want. Just remember
to update them frequently.

Only index will be committed.
Choose wisely what to add!

You do all the hecking right here!

A kind of shelf for the mess
you don’t want to include.

This is a tag. It looks like
a version so it’s probably

an object (annotated tag)

This is an
upstream branch

This is a merge commit,
it has two parents!

This is a tag. It looks like a developer’s note
so it’s probably a reference, not an object.

Your working directory is here

This is also a local branch

This is a local branch. It is 3 commits ahead,
you see it, right?

A D

Remote repo
(name: origin)

Repository

origin/fix/a fix/a

HEAD

Master

Working
directory

Remote repo
(name: public)

Index
(staging area)

Stash

working-version

V1.0.1This is an initial commit,
it has no parents

https://about.gitlab.com/
https://git-scm.com/downloads
https://git-scm.com/book

Git Cheat Sheet

GitHub for Windows
https://windows.github.com

GitHub for Mac
https://mac.github.com

Git for All Platforms
http://git-scm.com

Git distributions for Linux and POSIX systems are available on
the official Git SCM web site.

Install

Configure tooling
Configure user information for all local repositories

$ git config --global color.ui auto
Enables helpful colorization of command line output

$ git config --global user.email "[email address]"
Sets the email you want attached to your commit transactions

$ git config --global user.name "[name]"
Sets the name you want attached to your commit transactions

$ git clone [url]
Clone (download) a repository that already exists on
GitHub, including all of the files, branches, and commits

Create repositories
When starting out with a new repository, you only need to do it
once; either locally, then push to GitHub, or by cloning an
existing repository.

$ git init
Turn an existing directory into a git repository

$ git pull
Updates your current local working branch with all new
commits from the corresponding remote branch on GitHub.
 git pull is a combination of git fetch and git merge

Synchronize changesSynchronize changes
Synchronize your local repository with the remote repository
on GitHub.com

$ git push
Uploads all local branch commits to GitHub

$ git merge
Combines remote tracking branch into current local branch

$ git fetch
Downloads all history from the remote tracking branches

$ git branch -d [branch-name]
Deletes the specified branch

$ git merge [branch]
Combines the specified branch’s history into the
current branch. This is usually done in pull requests,
but is an important Git operation.

$ git checkout [branch-name]
Switches to the specified branch and updates the
working directory

Branches
Branches are an important part of working with Git. Any
commits you make will be made on the branch you're currently
“checked out” to. Use git status to see which branch that is.

$ git branch [branch-name]
Creates a new branch

The .gitgnore file
Sometimes it may be a good idea to exclude files from being
tracked with Git. This is typically done in a special file named
 .gitignore . You can find helpful templates for .gitignore
files at github.com/github/gitignore.

Git is the open source distributed version control system that facilitates GitHub activities on
your laptop or desktop. This cheat sheet summarizes commonly used Git command line
instructions for quick reference.

services@github.com
services.github.com

Want to learn more about using GitHub and Git?
Email the Training Team or visit our web site for learning
event schedules and private class availability.

Training

git: an open source, distributed version-control system
GitHub: a platform for hosting and collaborating on Git repositories
commit: a Git object, a snapshot of your entire repository compressed into a SHA
branch: a lightweight movable pointer to a commit
clone: a local version of a repository, including all commits and branches
remote: a common repository on GitHub that all team member use to exchange their changes
fork: a copy of a repository on GitHub owned by a different user
pull request: a place to compare and discuss the differences introduced on a branch with reviews, comments, integrated
tests, and more
HEAD: representing your current working directory, the HEAD pointer can be moved to different branches, tags, or commits
when using git checkout

Glossary

‘master’ branch

Commit changes Submit Pull Request Discuss proposed changes
 and make more commits

Create ‘feature’ branch from ‘master’ Merge ‘feature’ branch into ‘master’

GitHub Flow

$ git commit -m "[descriptive message]"
Records file snapshots permanently in version history

$ git add [file]
Snapshots the file in preparation for versioning

$ git show [commit]
Outputs metadata and content changes of the specified commit

Make changes
Browse and inspect the evolution of project files

$ git diff [first-branch]...[second-branch]
Shows content differences between two branches

$ git log --follow [file]
Lists version history for a file, including renames

$ git log
Lists version history for the current branch

$ git reset --hard [commit]
Discards all history and changes back to the specified commit

Redo commits
Erase mistakes and craft replacement history

CAUTION! Changing history can have nasty side effects. If you
need to change commits that exist on GitHub (the remote),
proceed with caution. If you need help, reach out at
github.community or contact support.

$ git reset [commit]
Undoes all commits after [commit], preserving changes locally

Git Cheat Sheet

git clean -n
Shows which files would be removed from working directory.
Use the -f flag in place of the -n flag to execute the clean.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

git push
<remote> <branch>

git reset <file>
Remove <file> from the staging area, but leave the working directory
unchanged. This unstages a file without overwriting any changes.

git pull <remote>
Fetch the specified remote’s copy of current branch and
immediately merge it into the local copy.

git revert
<commit>

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

git fetch
<remote> <branch>

Fetches a specific <branch>, from the repo. Leave off <branch>
to fetch all remote refs.

git remote add
<name> <url>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.

git diff
Show unstaged changes between your index and
working directory.

git commit -m
"<message>"

Commit the staged snapshot, but instead of launching
a text editor, use <message> as the commit message.

UNDOING CHANGES

git status List which files are staged, unstaged, and untracked.

REMOTE REPOSITORIES

git log
Display the entire commit history using the default format.
For customization see additional options.

git branch
List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branch>.

git checkout -b
<branch>

Create and check out a new branch named <branch>.
Drop the -b flag to checkout an existing branch.

git merge <branch> Merge <branch> into the current branch.

git add
<directory>

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a specific file.

git clone <repo>

git config
user.name <name>

GIT BRANCHES

Define author name to be used for all commits in current repo. Devs
commonly use --global flag to set config options for current user.

git rebase <base>

git reflog
Show a log of changes to the local repository’s HEAD.
Add --relative-date flag to show date info or --all to show all refs.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local filesystem or on a remote machine via HTTP or SSH.

git init
<directory>

Create empty Git repo in specified directory. Run with no
arguments to initialize the current directory as a git repository.

git commit
--amend

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
branch name, a tag, or a relative reference to HEAD.

GIT BASICS REWRITING GIT HISTORY

Git Cheat Sheet

Visit atlassian.com/git for more information, training, and tutorials

http://atlassian.com/git

git config --global
user.name <name>

Define the author name to be used for all commits by the current user.

GIT CONFIG

git config --global
user.email <email>

Define the author email to be used for all commits by the current user.

git config --global
alias. <alias-name>
<git-command>

Create shortcut for a Git command. E.g. alias.glog “log --graph
--oneline” will set ”git glog” equivalent to ”git log --graph --oneline.

git config --system
core.editor <editor>

Set text editor used by commands for all users on the machine. <editor>
arg should be the command that launches the desired editor (e.g., vi).

Open the global configuration file in a text editor for manual editing.git config
--global --edit

Limit number of commits by <limit>.
E.g. ”git log -5” will limit to 5 commits.

git log -<limit>

Include which files were altered and the relative number of
lines that were added or deleted from each of them.

git log --oneline

Display the full diff of each commit.

git log --stat

Search for commits by a particular author.

git log -p

git log --author=
”<pattern>”

Show commits that occur between <since> and <until>. Args can be a
commit ID, branch name, HEAD, or any other kind of revision reference.

git log
--grep=”<pattern>”

git log
<since>..<until>

Only display commits that have the specified file.git log -- <file>

--graph flag draws a text based graph of commits on left side of commit
msgs. --decorate adds names of branches or tags of commits shown.

git log --graph
--decorate

git diff HEAD Show difference between working directory and last commit.

git diff --cached Show difference between staged changes and last commit

git reset
Reset staging area to match most recent commit,
but leave the working directory unchanged.

git reset --hard
Reset staging area and working directory to match most recent
commit and overwrites all changes in the working directory.

git reset <commit>
Move the current branch tip backward to <commit>, reset the
staging area to match, but leave the working directory alone.

git reset --hard
<commit>

Same as previous, but resets both the staging area & working directory to
match. Deletes uncommitted changes, and all commits after <commit>.

GIT RESET

GIT REBASE

git rebase -i
<base>

Interactively rebase current branch onto <base>. Launches editor to enter
commands for how each commit will be transferred to the new base.

GIT PULL

git pull --rebase
<remote>

Fetch the remote’s copy of current branch and rebases it into the local
copy. Uses git rebase instead of merge to integrate the branches.

GIT PUSH

git push <remote>
--force

Forces the git push even if it results in a non-fast-forward merge. Do not use
the --force flag unless you’re absolutely sure you know what you’re doing.

git push <remote>
--all

Push all of your local branches to the specified remote.

git push <remote>
--tags

Tags aren’t automatically pushed when you push a branch or use the
--all flag. The --tags flag sends all of your local tags to the remote repo.

Additional Options +

Visit atlassian.com/git for more information, training, and tutorials

GIT DIFF

GIT LOG

Condense each commit to a single line.

Search for commits with a commit message that
matches <pattern>.

http://atlassian.com/git

GIT CHEAT SHEET

STAGE & SNAPSHOT
Working with snapshots and the Git staging area

git status

show modified files in working directory, staged for your next commit

git add [file]

add a file as it looks now to your next commit (stage)

git reset [file]

unstage a file while retaining the changes in working directory

git diff

diff of what is changed but not staged

git diff --staged

diff of what is staged but not yet committed

git commit -m “[descriptive message]”

commit your staged content as a new commit snapshot

SETUP
Configuring user information used across all local repositories

git config --global user.name “[firstname lastname]”

set a name that is identifiable for credit when review version history

git config --global user.email “[valid-email]”

set an email address that will be associated with each history marker

git config --global color.ui auto

set automatic command line coloring for Git for easy reviewing

SETUP & INIT
Configuring user information, initializing and cloning repositories

git init

initialize an existing directory as a Git repository

git clone [url]

retrieve an entire repository from a hosted location via URL

BRANCH & MERGE
Isolating work in branches, changing context, and integrating changes

git branch

list your branches. a * will appear next to the currently active branch

git branch [branch-name]

create a new branch at the current commit

git checkout

switch to another branch and check it out into your working directory

git merge [branch]

merge the specified branch’s history into the current one

git log

show all commits in the current branch’s history

Git is the free and open source distributed version control system that's responsible for everything GitHub
related that happens locally on your computer. This cheat sheet features the most important and commonly
used Git commands for easy reference.

INSTALLATION & GUIS
With platform specific installers for Git, GitHub also provides the
ease of staying up-to-date with the latest releases of the command
line tool while providing a graphical user interface for day-to-day
interaction, review, and repository synchronization.

GitHub for Windows
https://windows.github.com

GitHub for Mac
https://mac.github.com

For Linux and Solaris platforms, the latest release is available on
the official Git web site.

Git for All Platforms
http://git-scm.com

education@github.com
education.github.com

Education
Teach and learn better, together. GitHub is free for students and teach-
ers. Discounts available for other educational uses.

Teach and learn better, together. GitHub is free for students and teach-
ers. Discounts available for other educational uses.

SHARE & UPDATE
Retrieving updates from another repository and updating local repos

git remote add [alias] [url]

add a git URL as an alias

git fetch [alias]

fetch down all the branches from that Git remote

git merge [alias]/[branch]

merge a remote branch into your current branch to bring it up to date

git push [alias] [branch]

Transmit local branch commits to the remote repository branch

git pull

fetch and merge any commits from the tracking remote branch

TRACKING PATH CHANGES
Versioning file removes and path changes

git rm [file]

delete the file from project and stage the removal for commit

git mv [existing-path] [new-path]

change an existing file path and stage the move

git log --stat -M

show all commit logs with indication of any paths that moved TEMPORARY COMMITS
Temporarily store modified, tracked files in order to change branches

git stash

Save modified and staged changes

git stash list

list stack-order of stashed file changes

git stash pop

write working from top of stash stack

git stash drop

discard the changes from top of stash stack

REWRITE HISTORY
Rewriting branches, updating commits and clearing history

git rebase [branch]

apply any commits of current branch ahead of specified one

git reset --hard [commit]

clear staging area, rewrite working tree from specified commit

INSPECT & COMPARE
Examining logs, diffs and object information

git log

show the commit history for the currently active branch

git log branchB..branchA

show the commits on branchA that are not on branchB

git log --follow [file]

show the commits that changed file, even across renames

git diff branchB...branchA

show the diff of what is in branchA that is not in branchB

git show [SHA]

show any object in Git in human-readable format

IGNORING PATTERNS
Preventing unintentional staging or commiting of files

git config --global core.excludesfile [file]

system wide ignore pattern for all local repositories

logs/
*.notes
pattern*/

Save a file with desired patterns as .gitignore with either direct string
matches or wildcard globs.

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 1/14

Branches are one of the core concepts in Git. And

there's an endless amount of things you can do with

them. You can create and delete them, rename and

publish them, switch and compare them... and so much

more.

My intention with this post is to create a comprehensive overview

of the things you can do with branches in Git. I didn't want to

https://www.freecodecamp.org/news/tag/git/
https://www.freecodecamp.org/news/author/gntr/
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 2/14

produce a book-length article, so I won't go into detail for all of the

actions. But I will provide links if you want to learn more.
Here's an overview of what we're going to cover:

How to create branches

How to rename branches

How to switch branches

How to publish branches

How to track branches

How to delete branches

How to merge branches

How to rebase branches

How to compare branches

How to Create a Branch in Git
Before you can work with branches, you need to have some in your

repository. So let's start by talking about how to create branches:

$ git branch <new-branch-name>

When providing just a name to the git branch command, Git will

assume that you want to start your new branch based on your

currently checked out revision. If you'd like your new branch to start

at a speci�c revision, you can simply add the revision's SHA-1 hash:

$ git branch <new-branch-name> 89a2faad

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 3/14

It goes without saying that you can only create new branches in

your local repository. "Creating" branches in a remote repository

happens by publishing an existing local branch - which we'll talk

about later.

How to Rename a Branch in Git
Mistyping a branch's name or simply changing your mind after the

fact is all too easy. That's why Git makes it pretty easy to rename a

local branch. If you want to rename your current HEAD branch, you

can use the following command:

$ git branch -m <new-name>

In case you'd like to rename a different local branch (which is NOT

currently checked out), you'll have to provide the old and the new

name:

$ git branch -m <old-name> <new-name>

These commands, again, are used to work with local branches. If

you'd like to rename a remote branch, things are a little bit more

complicated - because Git doesn't allow you to rename remote

branches.

In practice, renaming a remote branch can be done by deleting the

old one and then pushing up the new one from your local repository:

First, delete the current / old branch:

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 4/14

$ git push origin --delete <old-name>

Then, simply push the new local branch with the correct name:
$ git push -u origin <new-name>

If you're using a Git desktop GUI like Tower, you won't be bothered

with these details: you can simply rename both local and remote

branches from a contextual menu (no need to delete and re-push

anything):

How to Switch Branches in Git
The current branch (also referred to as the HEAD branch) de�nes

the context you're working in at the moment. Or in other words: the

current HEAD branch is where new commits will be created.

Having said that, it makes sense that switching the currently active

branch is one of the most-used actions any developer performs

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.git-tower.com/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 5/14

when working with branches.

And since switching branches is also referred to as "checking out"

branches, you won't be surprised to learn the command that's used

to make this happen:

$ git checkout <other-branch>

However, because the git checkout command has so many

different duties, the Git community (fairly recently) introduced a

new command you can now also use to change the current HEAD

branch:

$ git switch <other-branch>

I think it makes a lot of sense to move away from the checkout

command – because it's used to perform so many different actions –

and instead move towards the new switch command, which is

absolutely unambiguous about what it does.

How to Publish a Branch in Git
As I already said in the section about "creating branches" above, it's

not possible to create a new branch on a remote repository.

What we can do, however, is publish an existing local branch on a

remote repository. We can "upload" what we have locally to the

remote and thereby share it with our team:

$ git push -u origin <local-branch>

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 6/14

The command, overall, is probably not a big surprise for you. But

one parameter, the -u �ag, is worth explaining – which I'll do in the

next section.

But to give you the short version here: it tells Git to establish a

"tracking connection" which will make pushing and pulling much

easier in the future.

How to Track Branches in Git
By default, local and remote branches have nothing to do with each

other. They are stored and managed as independent objects in Git.

But in real life, of course, local and remote branches often do have a

relationship with each other. For example, a remote branch is often

something like the "counterpart" of a local one.

Such a relationship can be modeled in Git: one branch (typically a

local one) can "track" another one (typically remote).

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 7/14

Once such a tracking relationship has been established, a couple of

things will become a lot easier: most notably, when pushing or

pulling, you can simply use the vanilla commands without any

further parameters (for example, a simple git push).

The tracking connection helps Git �ll in the blanks – which branch

on which remote you want to push to, for example.

You have already read about one way to establish such a tracking

connection: using git push with the -u option when publishing a

local branch for the �rst time does exactly that. After that, you can

simply use git push without mentioning the remote or the target

branch.

This also works the other way around: when creating a local branch

that should be based on a remote one. In other words, when you

want to track a remote branch:

$ git branch --track <new-branch> origin/<base-branch>

Alternatively, you could also use the git checkout command to

achieve this. If you want to name the local branch after the remote

one, you only have to specify the remote branch's name:

$ git checkout --track origin/<base-branch>

If you want to learn more about this topic, check out this post about

"Tracking Relationships in Git".

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.git-tower.com/learn/git/faq/track-remote-upstream-branch/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 8/14

How to Delete a Branch in GitNot all branches are meant to live forever. In fact, most branches in

any repository will be short-lived. So if you �nd yourself wanting to

do a little housecleaning, here's how to delete a local branch:

$ git branch -d <branch-name>

Note that you might also need the -f option in case you're trying to

delete a branch that contains un-merged changes. Use this option

with care because it makes losing data very easy!

To delete a remote branch, we cannot use the git branch

command. Instead, git push will do the trick, using the --delete

�ag:

$ git push origin --delete <branch-name>

When deleting a branch, keep in mind that you need to check if you

should delete its counterpart branch, too.

For example, if you have just deleted a remote feature branch, it

might make sense to also delete its local tracking branch. That way,

you make sure you aren't left with lots of obsolete branches – and a

messy Git repository.

How to Merge Branches in Git
Merging is probably the most popular way to integrate changes. It

allows you to bring all of the new commits from another branch into

your current HEAD branch.

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 9/14

One of the great things about Git is that merging branches is so

simple and stress-free. It requires just two steps:

Often, the result of a merge will be a separate new commit, the so-

called "merge commit". This is where Git combines the incoming

changes. You can think of it like a knot that connects two branches.

There is, of course, a lot more to say about git merge . Here are

some free resources that help you learn more:

How to Undo a Merge in Git

How to Fix and Solve Merge Con�icts

An Overview of "git merge"

How to Rebase Branches in Git
An alternative way to integrate commits from another branch is

using rebase . And I'm very careful to call it an "alternative" way: it's

(1) Check out the branch that should receive the changes
$ git switch main

(2) Execute the "merge" command with the name of the branch that con
$ git merge feature/contact-form

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.git-tower.com/learn/git/faq/undo-git-merge/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.git-tower.com/learn/git/faq/solve-merge-conflicts/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.git-tower.com/learn/git/commands/git-merge/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 10/14

not better or worse, but simply different.

If and when you use rebase mainly comes down to personal

preference and the conventions in your team. Some teams love

rebase, some prefer merge.

To illustrate the differences between merge and rebase, take a look

at the following illustrations. Using git merge , the result of our

integration of branch-B into branch-A would look like this:

Using git rebase , on the other hand, the end result will look quite

different – especially because no separate merge commit will be

created. Using rebase, it appears as if your development history

happened in a straight line:

Starting the actual process is pretty simple:

(1) Check out the branch that should receive the changes

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

https://www.freecodecamp.org/news/how-to-use-branches-in-git/ 11/14

For a deeper understanding of rebase, I recommend the post "Using

git rebase instead of git merge".

How to Compare Branches in Git
In certain situations, it can be very helpful to compare two

branches. For example, before you decide to integrate or delete a

branch, it's interesting to see how it differs from another branch.

Does it contain any new commits? And if so: are they valuable?

To see which commits are in branch-B but not in branch-A, you can

use the git log command with the double dot syntax:

$ git log branch-A..branch-B

Of course, you could also use this to compare your local and remote

states by writing something like git log main..origin/main .

If instead of the commits you'd prefer to see the actual changes that

make up those differences, you can use the git diff command:

$ git diff branch-A..branch-B

How to Become More

$ git switch feature/contact-form

(2) Execute the "rebase" command with the name of the branch that co
$ git rebase main

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.git-tower.com/learn/git/faq/rebase/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

11/02/2021 How to Use Branches in Git – the Ultimate Cheatsheet

12/14

Productive with Git
Working with branches in Git has many facets! But this is true for

Git in general: there's a ton of powerful features that many

developers don't know or can't use productively.

From Interactive Rebase to Submodules and from the Re�og to File

History: it pays to learn these advanced features – by becoming

more productive and making fewer mistakes.

One particularly helpful topic is learning how to undo mistakes with

Git. If you want to dive deeper into how you can save your neck

from the inevitable mistakes, check out this video about undoing

mistakes in Git.

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/news/how-to-undo-mistakes-with-git/
https://twitter.com/gntr
https://www.git-tower.com/?utm_source=freecodecamp&utm_medium=guestpost&utm_campaign=working-with-branches-in-git
https://www.freecodecamp.org/news/author/gntr/
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

How to check your Git configuration:?
The command below returns a list of information about your git configuration including
user name and email:
git config -l

How to setup your Git username:
With the command below you can configure your user name:
git config --global user.name "Yourname"

How to setup your Git user email:
This command lets you setup the user email address you'll use in your commits.
git config --global user.email "youremailaddresshere"

How to cache your login credentials in Git:
You can store login credentials in the cache so you don't have to type them in each time.
Just use this command:
git config --global credential.helper cache

How to initialize a Git repo:
Everything starts from here. The first step is to initialize a new Git repo locally
in your project root. You can do so with the command below:
git init

Git & GitHub terminology

Working Directory
It is the folder/directory where we initialize our git repository by using the command

Staging Area
It is an intermediate place between Working Directory and Local Repository to figure out what the
things you want git to ignore and what the things you want it to be tracked.

Repository
A repository is like a folder for your project. Your project's repository contains all of your project's
files and stores each file's revision history. You can also discuss and manage your project's work
within the repository.

Local Repository
It is the repo on which we will make local changes, typically this local repository is on our computer.

Remote Repository
It is a common repository that all team members use to exchange their changes. In most cases, such
a remote repository is stored on a code hosting service like GitHub or on an internal server.

Cloning
Cloning a git repository means that you create a local copy of the code provided by developer; it is
downloading the whole code of the repository.

Issues
Issues are a great way to keep track of tasks, enhancements, and bugs for your projects. They're kind
of like email—except they can be shared and discussed with the rest of your team.

Branches
A branch is a parallel version of a repository. It is contained within the repository, but does not affect
the primary or master branch allowing you to work freely without disrupting the "live" version. When
you've made the changes you want to make, you can merge your branch back into the master branch
to publish your changes.

Master Branch
One word: the master branch is deployable. It is your production code, ready to roll out into the world.
The master branch is meant to be stable, and it is the social contract of open source software to
never, ever push anything to master that is not tested, or that breaks the build.

Commit
It is a command used to save your changes to the local repository.

Push
Pushing refers to sending your committed changes to a remote repository, such as a repository
hosted on GitHub. For instance, if you change something locally, you'd want to then push those
changes so that others may access them.

Pull Request
Pull requests let you tell others about changes you've pushed to a branch in a repository on GitHub.
Once a pull request is opened, you can discuss and review the potential changes with collaborators
and add follow-up commits before your changes are merged into the base branch.

Merge
It is a command which lets you take the independent lines of development created by git branch and
integrate them into a single branch.

COMMAND SUMMARY:-

Single Git Commands : Initialize a git repo in the current directory

 git init add --username
 git init add --email

Add all untracked changed files to staging, ready to be committed
 git add -A

Commit with a message
git commit -m "some message here"

Review your commit history or checkpoints in time log, (gives you the commit address for reference):
git log --oneline

Switch to a a previous commit to review code from that checkpoint
git checkout <your-commit address-here>

Sync a remote repository to local repository with automatic alias assigned called "origin"
git remote add <alias-name> <your remote repository link comes here>

Push from local branch "master" up to remote branch "origin" (where 'origin' is set as an alias to the
remote repository)
git push origin master

Pull from remote branch "origin" down to local branch "master"
git pull origin master

Create a new branch to manage a side hustle in project
git branch <your new branch name>

View all branches in your repository, also marks the branch you are working on with *
git branch -a

Switch to a branch to work in it
git checkout <your-branch name-here>

Delete a branch
git checkout master
 // Deleting local branch
 git branch -D <branch name to be deleted>

How to add a file to the staging area in Git:
The command below will add a file to the staging area. Just replace filename_here with
the name of the file you want to add to the staging area.
git add filename_here

How to add all files in the staging area in Git
If you want to add all files in your project to the staging area, you can use a wildcard .
and every file will be added for you.
git add .

How to add only certain files to the staging area in Git
With the asterisk in the command below, you can add all files starting with 'fil'
in the staging area.
git add fil*

How to check a repository's status in Git:
This command will show the status of the current repository including staged,
unstaged, and untracked files.
git status

How to commit changes with a message in Git:
You can add a commit message without opening the editor. This command lets you only specify
a short summary for your commit message.
git commit -m "your commit message here"

How to commit changes (and skip the staging area) in Git:
You can add and commit tracked files with a single command by using the -a and -m options.
git commit -a -m"your commit message here"

How to see your commit history in Git:
This command shows the commit history for the current repository:
git log

How to see your commit history including changes in Git:
This command shows the commit's history including all files and their changes:
git log -p

How to see a specific commit in Git:
This command shows a specific commit.
Replace commit-id with the id of the commit that you find in the commit log after the
word commit.
git show commit-id

How to see log stats in Git:
This command will cause the Git log to show some statistics about the changes in each commit,
including line(s) changed and file names.
git log --stat

How to see changes made before committing them using "diff" in Git:
You can pass a file as a parameter to only see changes on a specific file. git diff shows only unstaged
changes by default.

We can call diff with the --staged flag to see any staged changes.
git diff
git diff all_checks.py
git diff --staged

How to see changes using "git add -p":
This command opens a prompt and asks if you want to stage changes or not, and
includes other options.
git add -p

How to remove tracked files from the current working tree in Git:
This command expects a commit message to explain why the file was deleted.
git rm filename

How to rename files in Git:
This command stages the changes, then it expects a commit message.
git mv oldfile newfile

How to ignore files in Git:
Create a .gitignore file and commit it.

How to revert unstaged changes in Git:
git checkout filename

How to revert staged changes in Git:
You can use the -p option flag to specify the changes you want to reset.
git reset HEAD filename
git reset HEAD -p

How to amend the most recent commit in Git:
allows you to modify and add changes to the most recent commit.
!!Note!!: fixing up a local commit with amend is great and you can push it to a shared
repository after you've fixed it. But you should avoid amending commits that have already
been made public.
git commit --amend

How to rollback the last commit in Git:
git revert will create a new commit that is the opposite of everything in the given commit.
We can revert the latest commit by using the head alias like this:
git revert HEAD

How to rollback an old commit in Git:
You can revert an old commit using its commit id. This opens the editor so you can
add a commit message.
git revert comit_id_here

How to create a new branch in Git:
By default, you have one branch, the main branch. With this command, you can create a new branch.
Git won't switch to it automatically – you will need to do it manually with the next command.
git branch branch_name

How to switch to a newly created branch in Git:
When you want to use a different or a newly created branch you can use this command:
git checkout branch_name

How to list branches in Git:
You can view all created branches using the git branch command. It will show a list
of all branches and mark the current branch with an asterisk and highlight it in green.
git branch

How to create a branch in Git and switch to it immediately:
In a single command, you can create and switch to a new branch right away.
git checkout -b branch_name

How to delete a branch in Git:
When you are done working with a branch and have merged it, you can delete it
using the command below:
git branch -d branch_name

How to merge two branches in Git:
To merge the history of the branch you are currently in with the branch_name,
you will need to use the command below:
git merge branch_name

How to show the commit log as a graph in Git:
We can use --graph to get the commit log to show as a graph. Also, --oneline will limit commit
messages to a single line.
git log --graph --oneline

How to show the commit log as a graph of all branches in Git:
Does the same as the command above, but for all branches.
git log --graph --oneline --all

How to abort a conflicting merge in Git:
If you want to throw a merge away and start over, you can run the following command:
git merge --abort

How to add a remote repository in Git
This command adds a remote repository to your local repository
(just replace https://repo_here with your remote repo URL).
git add remote https://repo_here

How to see remote URLs in Git:
You can see all remote repositories for your local repository with this command:
git remote -v

How to get more info about a remote repo in Git:
Just replace origin with the name of the remote obtained by
running the git remote -v command.
git remote show origin

How to push changes to a remote repo in Git:
When all your work is ready to be saved on a remote repository, you can
push all changes using the command below:
git push

How to pull changes from a remote repo in Git:
If other team members are working on your repository, you can retrieve the
latest changes made to the remote repository with the command below:
git pull

How to check remote branches that Git is tracking:
This command shows the name of all remote branches that Git is tracking for the current repository:
git branch -r

How to fetch remote repo changes in Git:
This command will download the changes from a remote repo but will not perform a merge
on your local branch (as git pull does that instead).
git fetch

How to check the current commits log of a remote repo in Git
Commit after commit, Git builds up a log. You can find out the remote repository log by using this
command:
git log origin/main

How to merge a remote repo with your local repo in Git:
If the remote repository has changes you want to merge with your local,
then this command will do that for you:
git merge origin/main

How to get the contents of remote branches in Git without automatically merging:
This lets you update the remote without merging any content into the
local branches. You can call git merge or git checkout to do the merge.
git remote update

How to push a new branch to a remote repo in Git:
If you want to push a branch to a remote repository you can use the command below.
Just remember to add -u to create the branch upstream:
git push -u origin branch_name

How to remove a remote branch in Git:
If you no longer need a remote branch you can remove it using the command below:
git push --delete origin branch_name_here

How to use Git rebase:
You can transfer completed work from one branch to another using git rebase.
git rebase branch_name_here

How to run rebase interactively in Git:
You can run git rebase interactively using the -i flag.
It will open the editor and present a set of commands you can use.
git rebase -i master
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit

How to force a push request in Git:
This command will force a push request. This is usually fine for pull request branches because nobody
else should have cloned them. But this isn't something that you want to do with public repos.
git push -f

